
v

11.2.2 IntervalList public members : 114

11.2.3 IntervalList iterator classes. :115

11.3 Classes for interacting with the system clock : 115

iv

8 Parameters and States :86

8.1 Class State : 86

8.1.1 State public members : 87

8.1.2 The State parser and protected members : : : : : : : : : : : : : : : : : 89

8.2 types of states : 91

8.2.1 Class IntState and class FloatState :91

8.2.2 Class ComplexState :92

8.2.3 Class StringState : 92

8.2.4 numeric array states : 92

8.2.5 Class StringArrayState :93

9 Support for known lists and such : : : : : : : : : : : : : : : : : : :93

9.1 Class KnownBlock : 94

9.2 Class KnownTarget : 95

9.3 Class Domain : 97

9.3.1 Domain virtual functions :97

9.4 Class KnownState : 98

10 I/O classes : 100

10.1 StringList, a kind of String class : 100

10.1.1 StringList constructors and assignment operators : : : : : : 100

10.1.2 adding to StringLists : 100

10.1.3 StringList information functions : 101

10.1.4 StringList conversion to const char * : : : : : : : : : : : : : : : : : : :101

10.1.5 StringList destruction and zeroing : 102

10.1.6 Class StringListIter :102

10.2 Tokenizer, a simple lexical analyzer class : 102

10.2.1 Initializing Tokenizer objects :103

10.2.2 Reading from Tokenizers :104

10.2.3 Tokenizer include �les : 104

10.3 pt ifstream and pt ofstream: augmented fstream classes : : : : : : : : : 105

10.4 XGraph, an interface to the xgraph program : 106

10.5 Histogram classes :107

10.5.1 Class Histogram : 107

10.5.2 Class XHistogram : 108

11 Miscellaneous classes :109

11.1 Mathematical classes : 109

11.1.1 class Complex : 109

11.1.2 class Fraction :110

11.2 Class IntervalList : 111

11.2.1 class Interval and methods :112

iii

5 Classes for connections between blocks : : : : : : : : : : : : 54

5.1 Class GenericPort :54

5.1.1 GenericPort query functions : 54

5.1.2 other GenericPort public members : 56

5.1.3 GenericPort protected members : 57

5.2 Class PortHole :57

5.2.1 PortHole public members : 57

5.2.2 PortHole protected members : 60

5.2.3 CircularBu�er { a class used to implement PortHole : : : : : :62

5.3 Class MultiPortHole : 63

5.3.1 MultiPortHole public members :63

5.3.2 MultiPortHole protected members :65

5.4 AutoFork and AutoForkNode : 65

5.4.1 Class AutoFork : 66

5.4.2 Class AutoForkNode : 66

5.5 Class ParticleStack :67

5.6 Class Geodesic : 68

5.6.1 Geodesic public members : 68

5.6.2 Geodesic protected members : 71

5.7 Class Plasma : 71

5.8 Class ParticleQueue :72

5.9 Classes for Galaxy ports : 74

6 Particles and Messages : 74

6.1 Class Particle : 74

6.2 Particle public members :74

6.3 Arithmetic Particle classes : 76

6.4 The Heterogeneous Message Interface : 77

6.4.1 Class Envelope : 77

6.4.2 Class Message : 79

6.4.3 Class MessageParticle :81

6.5 Example Message types : 81

7 The incremental linker : 83

7.0.1 Temporary vs. Permanent Incremental Linking : : : : : : : : : : :83

7.0.2 Linker public members :84

7.0.3 Linker implementation : 85

ii

2.3 Class Galaxy : 23

2.3.1 Galaxy public members : 24

2.3.2 Galaxy protected members :25

2.3.3 Galaxy iterators : 26

2.4 Class DynamicGalaxy :26

2.5 Class InterpGalaxy : 27

2.5.1 building structures with InterpGalaxy : 27

2.5.2 deleting InterpGalaxy structures : 30

2.5.3 InterpGalaxy and cloning : 30

2.5.4 other InterpGalaxy functions :31

2.6 Class Runnable : 31

2.7 Class Universe : 32

2.8 Class InterpUniverse : 33

3 Control of Execution and Error Reporting : : : : : : : : 34

3.1 Class Target : 35

3.1.1 Target public members :35

3.1.2 Target protected members : 38

3.2 Class Scheduler : 40

3.2.1 Scheduler public members :40

3.2.2 Scheduler protected members : 42

3.3 Class Error : 43

3.4 Class SimControl : 44

3.4.1 Access to SimControl status
ags. :44

3.4.2 Preactions and Postactions :45

3.4.3 SimControl interrupts and polling : 46

4 Interfacing domains { wormholes and related classes

46

4.1 Class Wormhole : 47

4.1.1 Wormhole public members : 47

4.1.2 Wormhole protected members :48

4.2 Class EventHorizon : 49

4.2.1 How EventHorizons are used : 50

4.2.2 EventHorizon public members :50

4.2.3 EventHorizon protected members : 51

4.3 Class ToEventHorizon :52

4.4 Class FromEventHorizon : 53

4.5 Class WormMultiPort :53

i

Table of Contents

1 Basic concepts, classes, and facilities : : : : : : : : : : : : : : : : 1

1.1 The C++ Subset Used In Ptolemy : 1

1.2 Iterators : 1

1.3 Non-class utility functions :2

1.4 Generic Data Structures :3

1.5 Class SequentialList :4

1.5.1 SequentialList information functions :4

1.5.2 other SequentialList functions : 5

1.5.3 Class ListIter : 5

1.6 Doubly linked lists : 6

1.6.1 Class DoubleLink : 6

1.6.2 Class DoubleLinkList : 7

1.6.3 Class DoubleLinkIter : 9

1.7 Other generic container classes : 10

1.7.1 Class Queue : 10

1.7.2 Class Stack : 10

1.8 Class NamedObj :11

1.8.1 NamedObj constructors and destructors : : : : : : : : : : : : : : : : : :11

1.8.2 NamedObj public members : 11

1.8.3 NamedObj protected members : 13

1.9 Class NamedObjList : 13

1.9.1 NamedObjList information functions : 14

1.9.2 other NamedObjList functions : 14

1.9.3 NamedObjList iterators :15

1.10 Attributes : 15

1.10.1 Attribute member functions :16

2 Block and related classes : 16

2.1 Class Block : 17

2.1.1 Block constructors and destructors : 17

2.1.2 Block public \information" members : 18

2.1.3 other Block public members :19

2.1.4 Block protected members : 21

2.1.5 Block iterator classes : 21

2.2 Class Star : 22

2.2.1 Star public members : 22

2.2.2 Star protected members :23

Chapter 11: Miscellaneous classes 116

These classes rely on features found in BSD-based Unix systems and newer System V Unix

systems. Older System V systems tend not to provide the ability to sleep for a time speci�ed more

accurately than a second.

operator double() const;

This returns the interval value as a double.

TimeVal operator +(const TimeVal& arg) const;

TimeVal operator -(const TimeVal& arg) const;

TimeVal& operator +=(const TimeVal& arg);

TimeVal& operator -=(const TimeVal& arg);

These operators do simple addition and subtraction of TimeVals.

class Clock provides a simple interface to the system clock for measurement of actual elapsed

time. It has an internal TimeVal �eld that represents the starting time of a time interval.

Clock();

The constructor creates a Clock with starting time equal to the time at which the constructor

is executed.

void reset();

This method resets the start time to \now".

TimeVal elapsedTime() const;

This method returns the elapsed time since the last reset or the call to the constructor.

int sleepUntil(const TimeVal& howLong) const;

This method causes the process to sleep until howLong after the start time.

Chapter 11: Miscellaneous classes 115

Subtract the Interval i1 from the list. That is, any intersection is removed from the set. Both

the subtract and -= forms are equivalent.

IntervalList& operator-=(const IntervalList &arg);

This one subtracts the argument arg from the list (removes any intersection).

int empty() const;

Return TRUE (1) for an empty IntervalList, otherwise FALSE (0).

11.2.3 IntervalList iterator classes.

There are two iterator classes associated with IntervalList, IntervalListIter and CIntervalListIter.

The only di�erence is that the latter iterator can be used with const IntervalList objects and returns

pointers to const Interval objects; the former requires a non-const IntervalIList and returns pointers

to Interval.

These objects obey the standard iterator interface; the next() or ++ function returns a pointer

to the next contained Interval; reset goes back to the beginning.

11.3 Classes for interacting with the system clock

These classes provide simple means of interacting with the operating system's clock { sleeping

until a speci�ed time, timing events, etc. They may be replaced with something more general.

class TimeVal represents a time interval to microsecond precision. There are three constructors:

TimeVal();

TimeVal(long sec, long usec);

TimeVal(double length);

The �rst represents a time interval of zero. The second represents a time interval with the

speci�ed number of seconds and microseconds. In the third case, the length argument is rounded

to the nearest multiple of one millionth.

Chapter 11: Miscellaneous classes 114

This Interval is changed to the intersection of itself and of i1.

11.2.2 IntervalList public members

IntervalList();

The default constructor produces the empty IntervalList.

IntervalList(unsigned origin,unsigned length);

This constructor creates an IntervalList containing length integers starting with origin.

IntervalList(const char* de�nition);

This constructor takes a de�nition of the IntervalList from the string in de�nition, parses it,

and creates the list of intervals accordingly.

There is also a copy constructor, an assignment operator, and a destructor.

int contains(const Interval& i1) const;

The contains method returns 0 if no part of i1 is in the IntervalList, 1 if i1 is completely

contained in the IntervalList, and -1 if i1 is partially contained (has a non-null intersection).

IntervalList& operator|=(const Interval& src);

IntervalList& operator|=(const IntervalList& src);

The |= operators sets the IntervalList to the union of itself and the Interval, or the IntervalList,

src.

IntervalList operator&(const IntervalList& arg) const;

The binary & operator returns the intersection of its arguments, which are not changed.

IntervalList& subtract(const Interval& i1);

IntervalList& operator-=(const Interval& i1);

Chapter 11: Miscellaneous classes 113

The end function returns the last unsigned integer that is a member of the Interval; 0 is returned

for empty Intervals.

There are a number of queries that are valuable for building a set class out of Intervals:

int isAfter(const Interval &i1) const;

isAfter returns true if this Interval begins after the end of interval i1 .

int endsBefore(const Interval &i1) const;

endsBefore returns true if this Interval ends strictly before the origin of interval i1.

int completelyBefore(const Interval &i1) const;

completelyBefore returns true if endsBefore is true and there is space between the intervals

(they cannot be merged).

int mergeableWith(const Interval& i1) const;

mergeableWith returns true if two intervals overlap or are adjacent, so that their union is also

an interval.

int intersects(const Interval& i1) const;

intersects returns true if two intervals have a non-null intersection.

int subsetOf(const Interval& i1) const;

subsetOf returns true if the argument is a subset of this interval.

void merge(const Interval& i1);

merge alters the interval to the result of merging it with i1. It is assumed that mergeableWith

is true.

Interval& operator&=(const Interval& i1);

Chapter 11: Miscellaneous classes 112

Whitespace is not permitted in this representation.

IntervalList speci�ers do not have to be in increasing order, but if they are not, they are changed

to "canonical form", in which any overlapping intervals are merged and the intervals are sorted to

appear in increasing order.

An IntervalList is best thought of as a set of unsigned integers. Its methods in many cases

perform set operations: forming the union, intersection, or set di�erence of two IntervalLists.

11.2.1 class Interval and methods

The Interval class is in some ways simply an implementation detail of class IntervalList, but

since its existence is exposed by public methods, it is documented here.

An Interval has an origin and a length, and represents the set of length unsigned integers

beginning with origin. It also has a pointer that can point to another Interval.

The constructor

Interval(unsigned origin=0, unsigned length=0,

Interval* nxt = 0);

permits all these members to be set. The copy constructor copies the origin and length values

but always sets the next pointer to null. A third constructor

Interval(const Interval& i1,Interval* nxt);

permits a combination of a copy and a next-pointer initialization.

The members

unsigned origin() const;

unsigned length() const;

return the origin and length values.

unsigned end() const;

Chapter 11: Miscellaneous classes 111

int num() const;

int den() const;

Return the numerator or denominator.

operator double() const;

Return the value of the fraction as a double.

Class Fraction implements the basic binary math operators +, -, *, /; the assignment operators

=, +=, -=, *=, and /=, and the equality test operators == and !=.

The method

Fraction& simplify();

reduces the fraction to lowest terms, and returns a reference to the fraction.

There is also an << operator to print a Fraction on an ostream.

11.2 Class IntervalList

The IntervalList class represents a set of unsigned integers, represented as a series of intervals

of integers that belong to the set.

It is built on top of a class Interval that represents a single interval.

There is also a text representation for IntervalLists. This representation can be used to read or

write IntervalList objects to streams, and also can be used in the IntervalList constructor. This

text representation looks exactly like the format the \rn" newsreader uses to record which articles

have been read in a Usenet newsgroup (which is where we got it from; thank you, Larry Wall).

In the text representation, an IntervalList is speci�ed as one or more Intervals, separated by

commas. An Interval is either an unsigned integer or two unsigned intervals with an intervening

minus sign. Here is one possible IntervalList speci�cation:

1-1003,1006,1008-1030,1050

Chapter 11: Miscellaneous classes 110

double arg(const Complex& arg);

Return the angle between the X axis and the vector made by the argument. The expression

abs(z)*exp(Complex(0.,1.)*arg(z))

is in theory always equal to z.

double norm(const Complex& arg);

return the absolute value squared.

Complex sin(const Complex& arg);

Complex cos(const Complex& arg);

Complex exp(const Complex& arg);

Complex log(const Complex& arg);

Complex sqrt(const Complex& arg);

Standard mathematical functions. log returns the principal logarithm.

Complex pow(double base,const Complex& expon);

Complex pow(const Complex& base, const Complex& expon);

Raise base to expon power.

There is also an << operator to print a Complex on an ostream.

11.1.2 class Fraction

Class Fraction represents fractions. The header `Fraction.h' also provides declarations for the

lcm (least common multiple) and gcd (greatest common divisor) functions, as these functions are

needed for Fraction but are generally useful.

Fraction ();

Fraction (int num, int den=1);

The default constructor produces a fraction with numerator 0 and denominator 1. The other

constructor allows the numerator and denominator to be speci�ed arbitrarily.

Chapter 11: Miscellaneous classes 109

error messages. binWidth and maxBins initialize the Histogram object. options is a string that

is included in the command line to the xgraph program; other options, including -bar -nl -brw

value, are passed as well. title is the graph title, and saveFile, if non-null, gives a �le in which

the histogram data is saved (this data is the histogram counts, not the data that was input with

addPoint).

void terminate();

This method completes the histogram,
ushes out the temporary �les, and executes xgraph.

11 Miscellaneous classes

This section includes classes that did not �t elsewhere.

11.1 Mathematical classes

11.1.1 class Complex

Class Complex is a simple subset of functions provided in the Gnu and AT&T complex classes.

The standard arithmetic operators are implemented, as are the assignment arithmetic operators

+=, -=, *=, and /=, and equality and inequality operators == and !=. There is also real() and

imag() methods for accessing real and imaginary parts.

It was originally written when libg++ was subject to the GPL. The current licensing for libg++

does not prevent us from using it and still distributing Ptolemy the way we want, but having it

makes ports to other compilers (e.g. cfront) easier.

The following non-member functions take Complex arguments:

Complex conj(const Complex& arg);

double real(const Complex& arg);

double imag(const Complex& arg);

double abs(const Complex& arg);

Return the conjugate, real part, imaginary part, or absolute value, respectively.

Chapter 10: I/O classes 108

always be a bin that includes the �rst point.

void add(double x);

Add the point x to the histogram.

int numCounts() const;

double mean() const;

double variance() const;

Return the number of counts, the mean, and the variance of the data in the histogram.

int getData(int binno, int& count, double& binCenter);

Get counts and bin centers by bin number, where 0 indicates the smallest bin. Return TRUE if

this is a valid bin. Thus the entire histogram data can be retrieved by stepping from 0 to the �rst

failure.

10.5.2 Class XHistogram

An XHistogram object has a private XGraph member and a private Histogram member. The

functions

int numCounts() const;

double mean() const;

double variance();

simply pass through to the Histogram object, and

void addPoint(float y);

adds a point to the histogram and does other bookkeeping. There are two remaining methods:

void initialize(Block* parent, double binWidth,

const char* options, const char* title,

const char* saveFile, int maxBins = HISTO_MAX_BINS);

This method initializes the graph and histogram object. parent is the parent Block, used for

Chapter 10: I/O classes 107

Add a single point to the �rst data set whose X value is automatically generated (0, 1, 2, 3...

on successive calls) and whose Y value is y.

void addPoint(float x, float y);

Add the point (x, y) to the �rst data set.

void addPoint(int dataSet, float x, float y);

Add the point (x, y) to the data set indicated by dataSet. Data sets start with 1.

void newTrace(int dataSet = 1);

Start a new trace for the nth dataset. This means that there will be no connecting line between

the last point plotted and the next point plotted.

void terminate();

This function
ushes the data out to disk, closes the �les, and invokes the xgraph program.

If the destructor is called before terminate, it will close and delete the temporary �les.

10.5 Histogram classes

The Historgram class accepts a stream of data and accumulates a histogram. The XHistogram

class uses a Histogram to collect the data and an XGraph to display it.

10.5.1 Class Histogram

The Histogram class accumulates data in a histogram. Its constructor is as follows:

Histogram(double width = 1.0, int maxBins = HISTO_MAX_BINS);

The default maximum number of bins is 1000. The bin centers will be at integer multiples of

the speci�ed bin width. The total width of the histogram depends on the data; however, there will

Chapter 10: I/O classes 106

used as replacements.

10.4 XGraph, an interface to the xgraph program

The XGraph class provides an interface for the `xgraph' program for plotting data on an X

window system display. The modi�ed `xgraph' program provided with the Ptolemy distribution

should be used, not the contributed version from the X11R5 tape.

The constructor for XGraph does not completely initialize the object; initialization is completed

by the initialize() method:

void initialize(Block* parent, int noGraphs,

const char* options, const char* title,

const char* saveFile = 0, int ignore = 0);

The parent argument is the name of a Block that is associated with the XGraph object; this

Block is used in Error::abortRun messages to report errors.

noGraphs speci�es the number of data sets that the graph will contain. Each data set is a

separate stream and is plotted in a di�erent color (a di�erent line style for B/W displays).

options is a series of command line options that will be passed unmodi�ed to the xgraph program.

It is subject to expansion by the Unix shell.

title is the title for the graph; it can contain special characters (it is not subjected to expansion

by the Unix shell).

saveFile is the name of a �le to save the graph data into, in ASCII form. If it is not given, the

data are not saved, and a faster binary format is used.

ignore speci�es the number of initial points to ignore from each data set.

void setIgnore(int n);

Reset the \ignore" parameter to n.

void addPoint(float y);

Chapter 10: I/O classes 105

The method

int fromFile(const char* name);

opens a new �le and the Tokenizer will then read from that. When that �le ends, Tokenizer will

continue reading from the current point in the current �le.

const char* current_file() const;

int current_line() const;

These methods report on the �le name and line number where Tokenizer is currently reading

from. This information is maintained for include �les. At the top level, current_file returns a

null pointer, but current_line returns one more than the number of line feeds seen so far.

int readingFromFile() const;

Returns true (1) if the Tokenizer is reading from an include �le, false (0) if not.

10.3 pt ifstream and pt ofstream: augmented fstream classes

The classes pt ifstream and pt ofstream are derived from the standard stream classes ifstream

and ofstream, respectively. They are de�ned in the header �le `pt_fstream.h'. They add the

following features:

First, certain special \�lenames" are recognized. If the �lename used in the constructor or an

open call is <cin>, <cout>, <cerr>, or <clog> (the angle brackets must be part of the string),

then the corresponding standard stream of the same name is used for input (pt ifstream) or output

(pt ofstream). In addition, C standard I/O fans can specify <stdin>, <stdout>, or <stderr> as

well.

Second, the Ptolemy expandPathName is applied to the �lename before it is opened, permitting

it to start with ~user or $VAR.

Finally, if a failure occurs when the �le is opened, Error::abortRun is called with an appropriate

error message, including the Unix error condition.

Otherwise these classes are identical to the standard ifstream and ofstream classes and can be

Chapter 10: I/O classes 104

10.2.2 Reading from Tokenizers

The next operation is the basic mechanism for reading tokens from the Tokenizer:

Tokenizer& operator >> (char * pBu�er);

Here pBu�er points to a character bu�er that reads the token. There is a design
aw: there

isn't a way to give a maximum bu�er length, so over
ow is a risk.

By analogy with streams, the following operation is provided:

operator void* ();

It returns null if EOF has already been reached and non-null otherwise. This permits loops like

Tokenizer tin;

while (tin) { ... do stuff ... }

int eof() const;

Returns true if the end of �le or end of input has been reached on the Tokenizer. It is possible

that there is nothing left in the input but write space, so in many situations skipwhite should be

called before making this test.

void skipwhite();

Skip whitespace in the input.

void flush();

If in an include �le, the �le is closed. If at the top level, discard the rest of the current line.

10.2.3 Tokenizer include �les

Tokenizer can use include �les, and can nest them to any depth. It maintains a stack of include

�les, and as EOF is reached in each �le, it is closed and popped o� of the stack.

Chapter 10: I/O classes 103

10.2.1 Initializing Tokenizer objects

Tokenizer provides three di�erent constructors:

Tokenizer();

The default constructor creates a Tokenizer that reads from the standard input stream, cin. Its

special characters are simply (and).

Tokenizer(istream& input,const char* spec,

const char* w = defWhite);

This constructor creates a Tokenizer that reads from the stream named by input. The other

arguments specify the special characters and the whitespace characters.

Tokenizer(const char* bu�er,const char* spec,

const char* w = defWhite);

This constructor creates a Tokenizer that reads from the null-terminated string in bu�er.

Tokenizer's destructor closes any include �les associated with the constructor and deletes asso-

ciated internal storage.

The following operations change the de�nition of whitespace and of special characters, respec-

tively:

const char* setWhite(const char* w);

const char* setSpecial(const char* s);

In each case, the old value is returned.

By default, the line comment character for Tokenizer is #. It can be changed by

char setCommentChar(char n);

Use an argument of 0 to disable the feature. The old comment character is returned.

Chapter 10: I/O classes 102

This function makes a copy of the StringList's text in a single piece as a char * in dynamic

memory. The object itself is not modi�ed. The caller is responsible for deletion of the returned

text.

10.1.5 StringList destruction and zeroing

void initialize();

This function deallocates all pieces of the StringList and changes it to an empty StringList.

~StringList();

The destructor calls the initialize function.

10.1.6 Class StringListIter

Class StringListIter is a standard iterator that operates on StringLists. Its next() function

returns a pointer of type const char * to the next substring of the StringList. It is important to

know that the operation of converting a StringList to a const char * string joins all the substrings

into a single string, so that operation should be avoided if extensive use of StringListIter is planned.

10.2 Tokenizer, a simple lexical analyzer class

The Tokenizer class is designed to accept input for a string or �le and break it up into tokens.

It is similar to the standard istream class in this regard, but it has some additional facilities. It

permits character classes to be de�ned to specify that certain characters are whitespace and others

are \special" and should be returned as single-character tokens; it permits quoted strings to override

this, and it has a �le inclusion facility. In short, it is a simple, recon�gurable lexical analyzer.

Tokenizer has a public const data member named defWhite that contains the default whitespace

characters: space, newline, and tab. It is possible to change the de�nition of whitespace for a

particular constructor.

Chapter 10: I/O classes 101

StringList& operator << (type arg);

The second \stream form" is considered preferable; the \+=" form is there for backward com-

patibility. If a StringList object is added, each piece of the added StringList is added separately

(boundaries between pieces are preserved); for the other �ve forms, a single piece is added.

10.1.3 StringList information functions

const char* head() const;

Return the �rst substring on the list (the �rst \piece"). A null pointer is returned if there are

none.

int length() const;

Return the length in characters.

int numPieces() const;

Return the number of substrings in the StringList.

10.1.4 StringList conversion to const char *

operator const char* ();

This function joins all the substrings in the StringList into a single piece, so that afterwards

numPieces will return 1. A null pointer is always returned if there are no characters.

Warning: if this function is called on a temporary StringList, it is possible that the compiler will

delete the StringList object before the last use of the returned const char * pointer. The result

is that the pointer may wind up pointing to garbage. The best workaround for such problems is

to make sure that any StringList object \has a name" before this conversion is applied to it; e.g.

assign the results of functions returning StringList objects to local StringList variables or references

before trying to convert them.

char* newCopy() const;

Chapter 10: I/O classes 100

10 I/O classes

10.1 StringList, a kind of String class

Class StringList provides a subset of the functions provided by the typical C++ String class;

enough for our purposes. It is privately derived from SequentialList (see Section 1.5 [class Sequen-

tialList], page 4).

Its internal implementation is as a list of char * strings, each on the heap. A StringList object

can be treated either as a single string or as a list of strings; the individual substrings retain their

separate identity until the conversion operator to type const char * is invoked. There are also

operators that add numeric values to the StringList; there is only one format available for such

additions.

10.1.1 StringList constructors and assignment operators

The default constructor makes an empty StringList. There is also a copy constructor and �ve

single-argument constructors that can function as conversions from other types to type StringList;

they take arguments of the types char, const char *, int, double, and unsigned int.

There are also six assignment operators corresponding to these constructors: one that takes a

const StringList& argument and also one for each of the �ve standard types: char, const char

*, int, double, and unsigned int.

The resulting object has one piece, unless initialized from another StringList in which case it

has the same number of pieces.

10.1.2 adding to StringLists

There are six functions that can add a printed representation of an argument to a StringList: one

each for arguments of type const StringList&, char, const char *, int, double, and unsigned

int. In each case, the function can be accessed in either of two equivalent ways:

StringList& operator += (type arg);

Chapter 9: Support for known lists and such 99

static IntState proto;

static KnownState entry(proto,"INT");

permits IntStates to be produced by cloning. The type argument must be in uppercase, because

of the way find works (see below).

The second type of constructor takes three arguments:

KnownState (State &state, const char* name, const char* value);

This constructor permits names to be added to the global state symbol list, for use in state

expresssions. For example, we have

static FloatState pi;

KnownState k_pi(pi,"PI","3.14159265358979323846");

static const State* find (const char* type);

The find method returns a pointer the appropriate prototype state in the state type list. The

argument is always changed to uppercase. A null pointer is returned if there is no match.

static const State* lookup (const char* name);

The lookup method returns a pointer to the appropriate state in the global state list, or null if

there is no match.

static State* clone (const char* type);

The clone method takes a string, �nds the appropriate state using find, and returns a clone of

that block. A null pointer is returned if there is no match, and Error::error is also called.

static StringList nameList();

Return the names of all the known state types, separated by newlines.

static int nKnown();

Return the number of known states.

Chapter 9: Support for known lists and such 98

virtual EventHorizon& newTo();

These functions create event horizon objects to represent the XXXfromUniversal and XXXtoUni-

versal functions. The default implementations return an error.

XXXDomain might override these as

EventHorizon& XXXDomain::newFrom() {

LOG_NEW; return *new XXXfromUniversal;

}

EventHorizon& XXXDomain::newTo() {

LOG_NEW; return *new XXXtoUniversal;

}

virtual Geodesic& newNode() = 0;

This function creates a new permanent node appropriate for netlist connections for the domain.

There is no default implementation.

virtual int isGalWorm();

This function returns FALSE by default. If overridden by a function that returns TRUE, a

wormhole will be created around every galaxy for this domain.

9.4 Class KnownState

KnownState manages two lists of states, one to represent the types of states known to the system

(integer, string, complex, array of
oating, etc), and one to represent certain predeclared global

states.

It is very much like KnownBlock (see Section 9.1 [class KnownBlock], page 94) in internal

structure. Since it manages two lists, there are two kinds of constructors.

KnownState (State &state, const char* name);

This constructor adds an entry to the state type list. For example,

Chapter 9: Support for known lists and such 97

static int isDynamic (const char* type);

Return true if there is a target on the known list named type that is dynamically linked;

otherwise return false.

static const char* defaultName(const char* dom = 0);

Return the default target name for a domain (default: current domain).

There is an iterator associated with KnownTarget, called KnownTargetIter. Since there is only

one known target list, it is unusual for an iterator in that it takes no argument for its constructor.

Its next function returns the type const Target *; it steps through the targets on the known list.

9.3 Class Domain

The Domain class represents the information that Ptolemy needs to know about a particular

domain so that it can create galaxies, wormholes, nodes, event horizons, and such for that domain.

For each domain, the designer creates a derived class of Domain and one prototype object. Thus

the Domain class has two main parts: a static interface, which manages access to the list of Domain

objects, and a set of virtual functions, which provides the standard interface for each domain to

describe its requirements.

9.3.1 Domain virtual functions

virtual Star& newWorm(Galaxy& innerGal,Target* innerTarget = 0);

This function creates a new wormhole with the given inner galaxy and inner target. The default

implementation returns an error.

XXXDomain might override this as follows:

Star& XXXDomain::newWorm(Galaxy& innerGal,Target* innerTarget) {

LOG_NEW; return *new XXXWormhole(innerGal,innerTarget);

}

virtual EventHorizon& newFrom();

Chapter 9: Support for known lists and such 96

track of blocks. There are some di�erences: there is only a single list of targets, not one per domain

as for blocks.

The constructor works exactly the same way that the constructor for KnownBlock works; the

code

static MyTarget proto(args);

static KnownTarget entry(proto,"MyTarget");

adds the prototype instance to the known list with a call to addEntry.

static void addEntry (Target &target, const char* name, int onHeap);

This function actually adds the Target to the list. If onHeap is true, the target will be destroyed

when the entry is removed or replaced from the list. There is only one list of Targets.

static const Target* find (const char* name);

The �nd method returns a pointer the appropriate target. A null pointer is returned if no match

is found.

static Target* clone (const char* name);

The clone method takes a string, �nds the appropriate target on the known target list, and

returns a clone of that block (the clone method is called on the target. This method, as a rule,

generates a duplicate of the target. An error message is generated (with Error::abortRun) and a

null pointer is returned if there is no match.

static int getList (const Block& b, const char** names, int nMax);

This function returns a list of names of targets that are compatible with the Block b. The return

value gives the number of matches. The names array can hold nMax strings; if there are more,

only the �rst nMax are returned.

static int getList (const char* dom, const char** names, int nMax);

This function is the same as above, except that it returns names of targets that are compatible

with stars of a particular domain.

Chapter 9: Support for known lists and such 95

static const Block* find (const char* name);

The �nd method returns a pointer the appropriate block in the current domain. A null pointer

is returned if no match is found.

static Block* clone (const char* name);

static Block* makeNew (const char* name);

The clone method takes a string, �nds the appropriate block in the current domain, and returns

a clone of that block (the clone method is called on the block. This method, as a rule, generates

a duplicate of the block.

The makeNew function is similar except that makeNew is called on the found block. As a rule,

makeNew returns an object of the same class, but with default initializations (for example, with

default state values).

For either of these, an error message is generated (with Error::abortRun) and a null pointer

is returned if there is no match.

static StringList nameList();

static StringList nameList (const char* domain);

Return the names of known blocks in the current domain (�rst form) or the given domain

(second form). Names are separated by newline characters.

static int isDynamic (const char* type);

Return true if the named block is dynamically linked.

There is an iterator associated with KnownBlock, called KnownBlockIter. It takes as an argu-

ment the name of a domain. The argument may be omitted, in which case the current domain is

used. Its next function returns the type const Block *; it steps through the blocks on the known

list for that domain.

9.2 Class KnownTarget

The KnownTarget class keeps track of targets in much the same way that KnownBlock keeps

Chapter 9: Support for known lists and such 94

9.1 Class KnownBlock

The KnownBlock class is responsible for keeping a master list of all known types of Block objects

in the system. All member functions of KnownBlock are static; the only non-static function of

KnownBlock is the constructor.

The KnownBlock constructor has the form

KnownBlock(Block& block,const char* name);

The only reason for constructing a KnownBlock object is for the side e�ects; the side e�ect is

to add block to the known block list for its domain under the name name, using addEntry.

The reason for using a constructor for this purpose is that constructors for global objects are

called before execution of the main program; constructors therefore serve as a mechanism for

execution of arbitrary initialization code for a module (as used here, \module" is an object �le).

Hence `ptlang', the Ptolemy star preprocessor, generates code like the following for star de�nitions:

static XXXMyClass proto;

static KnownBlock entry(proto,"MyClass");

This code adds a prototype entry of the class to the known list.

static void addEntry (Block &block, const char* name, int onHeap);

This function actually adds the block to the list. If onHeap is true, the block will be destroyed

when the entry is removed or replaced from the list. Separate lists are maintained for each domain;

the block is added to the list corresponding to block.domain().

static const char* domain();

Return the current domain name.

static int setDomain (const char* newDom);

Change the current domain. Return TRUE if it worked, FALSE for an unknown domain. This

a�ects which sublist of blocks is searched by subsequent find and clone calls.

Chapter 9: Support for known lists and such 93

element selection operator (operator[](int)), and an operator that converts the state into a

pointer to the �rst element of its data (much like arrays in C).

The expression parser for FloatArrayState accepts a series of \subarray expressions", which are

concatenated together to get the current value when initialize() is called. Subarray expressions

may specify a single element, some number of copies of a single element, or a galaxy array state of

the same type (another FloatArrayState). A single element speci�er may either be a
oating point

value, a scalar (integer or
oating) galaxy state name, or a general
oating expression enclosed in

parentheses. A number of copies of this single element can be speci�ed by appending an integer

expression enclosed in square brackets.

The expression parsers for IntArrayState and ComplexArrayState di�er only that where FloatAr-

rayState wants a
oating expression, IntArrayState wants an integer expression and ComplexAr-

rayState wants a complex expression (an expression suitable for initializing a ComplexState).

8.2.5 Class StringArrayState

As its name suggests, the current value for a StringArrayState is an array of strings. Whitespace

in the initial value string separates \words"; each word is assigned by initialize() into a separate

array element. Quotes can be use to permit \words" to have whitespace.

Current values of galaxy states can be converted into single elements of the StringArrayState

value by surrounding their names with curly braces in the initial value. Galaxy StringArrayState

names will be translated into a series of values.

There is currently no provision for modifying the current value of a StringArrayState other than

calling of initialize to parse the current value string.

9 Support for known lists and such

Ptolemy is an extensible system, and in quite a few places it must create objects given only the

name of that object. There are therefore several classes that are responsible for maintaining lists:

the list of all known domains, of all known blocks, states, targets, etc. As a general rule, these

classes support a clone or makeNew method to create a new object based on its name (you cannot

clone a domain, however).

Chapter 8: Parameters and States 92

The type() function for IntState returns "INT". For FloatState, "FLOAT" is returned. For both

implementations, a prototype object is added to the KnownState list.

8.2.2 Class ComplexState

ComplexState is much like FloatState and IntState, except in the expressions it accepts for

initial values. Its data member is Complex and it accordingly de�nes an assignment operator that

takes a complex value and a conversion operator that returns one.

The initial value string for a ComplexState takes one of three forms: it may be the name of a

galaxy ComplexState, a
oating expression (of the form accepted by State::evalFloatExpression),

or a string of the form

(
oatexp1 ,
oatexp2)

where both
oatexp1 and
oatexp2 are
oating expressions. For the second form, the imaginary

part will always be zero. For the third form, the �rst expression gives the real part and the second

gives the imaginary part.

8.2.3 Class StringState

A StringState's current value is a string (more correctly, of type const char*). The current

value is created by the initialize() function by scanning the initial value string. This string

is copied literally, except that curly braces are special. If a pair of curly braces surrounds the

name of a galaxy state, the printed representation of that state's current value (returned by the

currentValue function) is substituted. To get a literal curly brace in the current value, pre�x it

with a backslash.

Class StringState de�nes assignment operators so that di�erent string values can be copied to

the current value; the value is copied with savestring (see Section 1.3 [utility functions], page 2)

and deleted by the destructor.

8.2.4 numeric array states

Classes IntArrayState and FloatArrayState are produced from the same pseudo-template. Class

ComplexArrayState has a very similar design. All return TRUE to isArray, provide an array

Chapter 8: Parameters and States 91

wantedType T Int, so any
oating values in the expression are truncated to integer.

The token types returned from each of these methods will be one of T Int, T EOF, or T ERROR.

ParseToken evalFloatExpression(Tokenizer& lexer);

ParseToken evalFloatTerm(Tokenizer& lexer);

ParseToken evalFloatFactor(Tokenizer& lexer);

ParseToken evalFloatAtom(Tokenizer& lexer);

These functions have the identical structure as the corresponding Int functions.

The token types returned from each of these methods will be one of T Float, T EOF, or

T ERROR.

8.2 types of states

8.2.1 Class IntState and class FloatState

Class IntState, derived from State, has an integer current value. Its initialize() function

uses the evalIntExpression function to read an integer expression from the initial value string.

If successful, it attempts to read another token from the string; if there is another token, it reports

the error \extra text after valid expression".

An assignment operator is provided that accepts an integer value and loads it into the current

value. A cast to integer is also de�ned for accessing the current value. The virtual function

currentValue is overloaded to return a printed version of the current value.

In addition to the setInitValue from class State, a second form is provided that takes an

integer argument.

Standard overrides for isA, className, and clone are provided.

Class FloatState is almost identical to class IntState except that its data �eld is a double

precision value; where IntState functions have an argument or return value of int, FloatState has

a corresponding argument or return value of double. Both are generated from the same pseudo-

template �les.

Chapter 8: Parameters and States 90

parseError and an error token is returned. If a State is found, a token of type T ID is returned if

it is an array state or COMPLEX; otherwise the state's current value is substituted and reparsed

as a token. This means, for example, that a name of an IntState will be replaced with a T Int

token with the correct value.

const State* lookup(const char* name, Block* b);

This method searches for a state named name in Block b or one of its ancestors, and either

returns it or a null pointer if not found.

void parseError (const char* part1, const char* part2 = "");

This method produces an appropriately formatted error message with the name of the state and

the arguments and calls Error::abortRun.

static ParseToken pushback;

This is the pushback token, for use in parsing. Notice that it is static, which means that the

state parser is not reentrant.

ParseToken evalIntExpression(Tokenizer& lexer);

ParseToken evalIntTerm(Tokenizer& lexer);

ParseToken evalIntFactor(Tokenizer& lexer);

ParseToken evalIntAtom(Tokenizer& lexer);

These four functions implement a simple recursive-descent expression parser.

An expression is either a term or a series of terms with intervening '+' or '-' signs.

A term is either a factor or a series of factors with interventing '*' or '/' signs.

A factor is either an atom or a series of atoms with intervening '^' signs for exponentiation.

(Note, C fans! ^ means exponentiation, not exclusive-or!).

An atom is any number of optional unary minus signs, followed either by a parenthesized ex-

pression or a T Int token.

If any of these methods reads too far, the pushback token is used. All getParseToken calls use

Chapter 8: Parameters and States 89

8.1.2 The State parser and protected members

Most of class State's protected interface consists of a simple recursive-descent parser for parsing

integer and
oating expressions that appear in the initial value string.

class ParseToken represents tokens for this parser; it contains a token type (an integer code) and

a token value, which is a union that represents either a character value, a string value, an integer

value, a double value, a Complex value, or a State value (for use when the initializer references

another state). Token types are equal to the ASCII character value for single-character tokens;

other possible token values are:

T_EOF for end of �le, T_ERROR for error, T_Float for a
oating value, T_Int for an integer value,

T_ID for a reference to a state, and T_STRING for a string value. For most of these, the token value

holds the appropriate value.

Most derived State classes use this parser to provide uniformity of syntax and error reporting;

however, it is not a requirement to use it.

Derived State classes are expected to associate a Tokenizer object with their initial value string;

the functions provided here can then be used to parse expressions appearing in that string.

ParseToken getParseToken(Tokenizer& tok, int wantedType= T_Float);

This function obtains the next token from the input stream associated with the Tokenizer. If

there is a pushback token, that token is returned instead. If it receives a '<' token, it assumes that

the next whitespace-delimited string is a �le and uses Tokenizer's include �le capability to cause it

to read from that �le.

It returns a T EOF token on end of �le. The characters in ,[]+*-/()^ are considered special

and the lexical value is equal to the character value.

Integer and
oating values are recognized and evaluated to produce either T Int or T Float

tokens. However, the decision is based on the value of wantedType; if it is T Float, all numeric

values are returned as T Float; if it is T Int, all numeric values are returned as T Int.

produce T Int and T Float tokens. Names that take the form of a C or C++ identi�er are

assumed to be names of states de�ned at a higher level (states belonging to the parent galaxy or

some ancestor galaxy). They are searched for using lookup; if not found, an error is reported using

Chapter 8: Parameters and States 88

virtual int isArray() const;

Return TRUE if this state is an array, false otherwise. The default implementation returns false.

virtual void initialize() = 0;

Initialize the state. The initialize function for a state is responsible for parsing the initial

value string and setting the current value appropriately; errors are signaled using the Error::abortRun

mechanism.

virtual StringList currentValue() const = 0;

Return a string representation of the current value.

void setCurrentValue(const char* newval);

Modify the current value, in a type-independent way. Notice that this function is not virtual.

It exploits the semantics of initialize to set the current value using other functions; the initial

value is not modi�ed (it is saved and restored).

virtual State* clone() const = 0;

Derived state classes override this method to create an identical object to the one the method

is called on.

StringList print(int verbose) const;

Output all info. This is NOT rede�ned for each type of state.

bitWord attributes() const;

Return my attribute bits.

bitWord setAttributes(const Attribute& attr);

bitWord clearAttributes(const Attribute& attr);

Set or clear attributes.

Chapter 8: Parameters and States 87

The constructor for class State sets the initial value to a null pointer, and sets the state's

attributes to a value determined by the constant AB DEFAULT. The destructor does nothing

extra.

8.1.1 State public members

State& setState(const char* stateName, Block* parent,

const char* initValue, const char* desc = NULL);

This function sets the name, parent, initial value, and optionally the descriptor for a state. The

character strings representing the initial value and descriptor must outlive the State.

State& setState(const char* stateName, Block* parent,

const char* initValue, const char* desc,

Attribute attr);

This function is the same as the other setState, but it also sets attributes for the state. The

Attribute object represents a set of attribute bits to turn on or o�.

void setInitValue(const char* valueString);

This function sets the initial value to valueString. This string must outlive the State.

const char* initValue () const;

Return the initial value.

virtual const char* type() const = 0;

Return the type name (for use in user interfaces, for example). When states are created dy-

namically (by the KnownState or InterpGalaxy class), it is this name that is used to specify the

type.

virtual int size() const;

Return the size (number of distinct values) in the state. The default implementation returns 1.

Array state types will return the number of elements.

Chapter 8: Parameters and States 86

Align the memory as required.

Form the command line and execute the Unix linker. Only certain
ags in the command line

will be system-dependent.

Read in the object �le. This is heavily system-dependent.

Make the read-in text executable. On most systems this is a do-nothing step.

Invoke constructors in the newly read in code. Constructors are found by use of the `nm' program;

the output is parsed to search for constructor symbols, whose form depends on the compiler used.

If this is a permanent link, copy the linker output to �le `.pt_symtable'; otherwise delete it.

8 Parameters and States

A State is a data-structure associated with a block, used to remember data values from one

invocation to the next. For example, the gain of an automatic gain control is a state. A state need

not be dynamic; for instance, the gain of �xed ampli�er is a state. A parameter is the initial value

of a state.

A State actually has two values: the initial value, which is always a character string, and a

current value, whose type is di�erent for each derived class of State: integer for IntState, an array

of real values for FloatArrayState, etc.

In addition, states have attributes, which represent logical properties the state either has or

does not have.

8.1 Class State

Class State is derived from class NamedObj (see Section 1.8 [class NamedObj], page 11).

The State baseclass is an abstract class; you cannot create a plain State. The baseclass contains

the initial value, which is always a const char*; the derived classes are expected to provide current

values of appropriate type.

Chapter 7: The incremental linker 85

static int enabled();

Returns true if the linker is enabled (it is enabled by calling Linker::init if that function

returns successfully.

static const char* imageFileName();

Return the fully-expanded name of the executable image �le (set by Linker::init.

static void setDefaultOpts(const char* newValue);

static const char* defaultOpts();

These functions set or return the linker's default options, a set of
ags appended to the end of

the command line by all links.

7.0.3 Linker implementation

This section is intended to assist those that attempt to port the Linker module to other platforms.

The Linker class is implemented in three �les: `Linker.h', specifying the class interface, `Linker.cc',

specifying the implementation, and `Linker.sysdep.h', specifying all the machine dependent parts

of the implementation.

The Linker class currently works on the Sun-3 or Sun-4 running g++, the Sun-4 running Sun's

cfront port, and Vaxes and DecStations running Ultrix. Some work has been done to port it to

the HP-PA architecture; this is not yet complete.

The intent is to structure the code in such a way that no #ifdefs appear in `Linker.cc'; they

should all be in `Linker.sysdep.h'.

The linker reads all new code into a pre-existing large array, rather than creating blocks of the

right size with new, because the right size is not known in advance but a starting location must, as

a rule, be passed to the loader in advance. This means that there is a wired-in limit to how much

code can be linked in. The symbol LINK_MEMORY, which is set to one megabyte by default, is easily

changed if required.

Here are the steps taken by the linker to do its work:

Chapter 7: The incremental linker 84

by subsequent links, temporary or permanent. This �le is deleted when the Ptolemy process exits

normally. It is left around when the process crashes, as it is useful for debugging (as it contains

symbols for object �les that were incrementally linked using the permanent method as well as those

in the original executable).

7.0.2 Linker public members

static void init(const char* execName);

This function initializes the linker module by telling it where the executable for this program

is. For most purposes, passing it the value of argv[0] passed to the main function will su�ce.

static int linkObj(const char* objName);

Link in a single object module using the temporary link mechanism (this entry point is provided

for backward compatibility).

static int multiLink(const char* args, int permanent);

static int multiLink(int argc, char** argv);

Both of these functions give access to the main function for doing an incremental link. They

permit either a temporary or a permanent link of multiple �les;
ags to the Unix linker such as -l

to specify a library or -L to specify a search directory for libraries are permitted. For the �rst form,

args are passed as part of a linker command that is expanded by the Unix shell. A permanent link

is performed if permanent is true (nonzero); otherwise a temporary link is performed.

The second form is provided for ease of interfacing to the Tcl interpreter, which likes to pass

arguments to commands in this style. In this case, argv[0] indicates the type of link: if it begins

with the character p, a permanent link is performed; otherwise a temporary link is performed. The

remaining arguments are concatentated (separated by spaces) and appear in the argument to the

Unix linker.

static int isActive();

This function returns TRUE if the linker is currently active (so objects can be marked as

dynamically linked by the known list classes). Actually the
ag it returns is set while constructors

or other functions that have just been linked are being run.

Chapter 7: The incremental linker 83

int isA(const char* type) const;

TRUE for type equal to "FloatVecData", otherwise false.

StringList print() const;

Returns a comma-separated list of elements enclosed in curly braces.

Message* clone() const;

Creates an identical copy with new.

7 The incremental linker

The incremental linker permits user written code to be added to the system at runtime. Two

di�erent mechanisms are provided, called a temporary link and a permanent link.

In either case, code is linked using the incremental linking facilities of the Unix linker, the new

code is read into the Ptolemy executable, and symbols corresponding to C++ global constructors

are located and called. This means that such code is expected to register objects on Ptolemy's

known lists (e.g. KnownBlock, KnownState, or KnownTarget) so that new classes become usable.

Warning: if the executable containing the Linker class is stripped, the incremental linker will

not work!

7.0.1 Temporary vs. Permanent Incremental Linking

Code that is linked in by the \temporary link" technique does not alter the symbol table in

use. For that reason, subsequent incremental links, whether temporary or permanent, cannot \see"

any code that was linked in by previous temporary links. The advantage is that the same symbols

(for example, a Ptolemy star de�nition) may be rede�ned, which is useful in code development, as

buggy star de�nitions can be replaced by valid ones without exiting Ptolemy.

Code that is linked in by the \permanent link" method has the same status as code that was

linked into the original executable. A permanent link creates or replaces the `.pt_symtable' �le

in the directory in which Ptolemy was started. This �le contains the current symbol table for use

Chapter 6: Particles and Messages 82

Each provides a public data member that points to the data. As a rule, we recommend against

public data members for classes, but an exception was made in this case, perhaps unwisely.

This section will describe the interface of the FloatVecData class. The interface for IntVecData

is almost identical.

Three constructors are provided:

FloatVecData(int len);

This form creates an uninitialized array of length len in the FloatVecData object. Since the

pointer to the data is public the array may easily be �lled in.

FloatVecData(int len,const float *srcData);

This form creates an array of length len and initializes it with len elements from srcData.

FloatVecData(int len,const double *srcData);

This form is the same, except that the source data is double precision (it is converted to single

precision). This is the only function for which an analogous function does not exist in IntVecData

(an IntVecData can only be initialized from an integer array).

An appropriate copy constructor, assignment operator, and destructor are de�ned.

int length() const;

Return the length of the array.

float *data;

Public data member; points to the array. It is permissible to read or assign the len elements

starting at data; the e�ect of altering the data pointer itself is unde�ned.

const char* dataType() const;

Returns the string "FloatVecData".

Chapter 6: Particles and Messages 81

where msgtype is the type of the Message, and cvttype is the argument.

6.4.3 Class MessageParticle

MessageParticle is a derived type of Particle (see Section 6.1 [class Particle], page 74) whose

data �eld is an Envelope; accordingly, it can transport Message objects.

MessageParticle de�nes no new methods of its own; it only provides behaviors for the virtual

functions de�ned in class Particle. The most important such behaviors are as follows:

void operator << (const Envelope& env);

This method loads the Message contained in env into the Envelope contained in the MessagePar-

ticle. Since the Envelope assignment operator is used, after execution of this method both env and

the MessageParticle refer to the message, so its reference count is at least 2.

void getMessage(const Envelope& env);

This method loads the message contained in the MessageParticle into the Envelope env, and

removes the message from the MessageParticle (so that it now contains the dummy message). If env

previously contained the only reference to some other Message, that previously contained Message

will be deleted.

void accessMessage(const Envelope& env);

accessMessage is the same as getMessage except that the message is not removed from the

MessageParticle. It can be used in situations where the same Particle will be read again. We

recommend that getMessage be used where possible, especially for very large message objects, so

that they are deleted as soon as possible.

6.5 ExampleMessage types

The kernel provides two simple sample message types for transferring arrays of data. They are

almost identical except that one holds an array of integers and the other holds an array of single

precision
oating point data. The array contents live on the heap. Each is derived from class

Message.

Chapter 6: Particles and Messages 80

virtual int isA(const char*) const;

The isA function returns true if given the name of the class or the name of any baseclass.

Exception: the baseclass function returns FALSE to everything (as it has no data at all). A macro

ISA_FUNC is de�ned to automate the generation of implementations of derived class isA functions;

it is the same one as that used for the NamedObj class.

The following methods may optionally be rede�ned.

virtual StringList print() const;

This method returns a printable representation of the Message. The default implementation

returns a message like

Message class <type>: no print method

where type is the message type as returned by the dataType function.

virtual int asInt() const;

virtual double asFloat() const;

virtual Complex asComplex() const;

These functions represent conversions of the Message data to an integer, a
oating point value,

and a complex number, respectively. Usually such conversions do not make sense; accordingly,

the default implementations generate an error message (using the protected member function

errorConvert) and return a zero of the appropriate type. If a conversion does make sense, they

may be overriden by a method that does the appropriate conversion. These methods will be used

by the MessageParticle class when an attempt is made to read a MessageParticle in a numeric

context.

One protected member function is provided:

int errorConvert(const char* cvttype) const;

This function invokes Error::abortRun with a message of the form

Message class <msgtype>: invalid conversion to cvttype

Chapter 6: Particles and Messages 79

All these methods are \passthrough methods"; the return value is the result of calling the

identically named function on the contained Message object.

6.4.2 Class Message

Message objects can be used to carry data between blocks. Unlike Particles, which must all be

of the same type on a given connection, connections that pass Message objects may mix message

objects of many types on a given connection. The tradeo� is that blocks that receive Message

objects must, as a rule, type-check the received objects.

The baseclass for all messages, named Message, contains no data, only a reference count (ac-

cordingly, all derived classes have a reference count and a standard interface). The reference count

counts how many Envelope objects refer to the same Message object.

The constructor for Message creates a reference count that lives on the heap. This means that

the reference count is non-const even when the Message object itself is const.

The copy constructor for Message ignores its argument and creates a new Message with a new

reference count. This is necessary so that no two messages will share the same reference count.

The destructor, which is virtual, deletes the reference count.

The following Message functions must be overriden appropriately in any derived class:

virtual const char* dataType() const;

This function returns the type of the Message. The default implementation returns \DUMMY".

virtual Message* clone() const;

This function produces a duplicate of the object it is called on. The duplicate must be \good

enough" so that applications work the same way whether the original Message or one produced by

clone() is received. A typical strategy is to de�ne the copy constructor for each derived Message

class and write something like

Message* MyMessage::clone() const { return new MyMessage(*this);}

Chapter 6: Particles and Messages 78

both Envelopes refer to the same message.

int empty() const;

Return TRUE if the Envelope is \empty" (points to the dummy message), FALSE otherwise.

const Message* myData() const;

Return a pointer to the contained Message. This pointer must not be used to modify the Message

object, since other Envelopes may refer to the same message.

Message* writableCopy();

This method produces a writable copy of the contained Message, and also zeros the Envelope

(sets it to the empty message). If this Envelope is the only Envelope that refers to the message,

the return value is simply the contained message. If there are multiple references to the message,

the clone method is called on the Message, making a duplicate, and the duplicate is returned.

The user is now responsible for memory management of the resulting Message. If it is put into

another Envelope, that Envelope will take over the responsibility, deleting the message when there

is no more need for it. If it is not put into another Envelope, the user must make sure it is deleted

somehow, or else there will be a memory leak.

int typeCheck(const char* type) const;

This member function asks the question \is the contained Message of class type, or derived from

type"? It is implemented by calling isA on the Message. Either TRUE or FALSE is returned.

const char* typeError(const char* expected) const;

This member function may be used to format error messages for when one type of Message was

expected and another was received. The return value points to a static bu�er that is wiped out by

subsequent calls.

const char* dataType() const;

int asInt() const;

double asFloat() const;

Complex asComplex() const;

StringList print() const;

Chapter 6: Particles and Messages 77

initialize for each of these classes sets the data value to zero (for the appropriate domain).

The DataTypes returned by these Particle types are the global symbols INT, FLOAT, and

COMPLEX, respectively. They have the string values \INT", \FLOAT", and \COMPLEX".

6.4 The HeterogeneousMessage Interface

The heterogeneous message interface is a mechanism to permit messages of arbitrary type (ob-

jects of some derived type of class Message) to be transmitted by blocks. Because these messages

may be very large, facilities are provided to permit many references to the same Message; Message

objects are \held" in another class called Envelope. As the name suggests, Messages are transferred

in Envelopes. When Envelopes are copied, both Envelopes refer to the same Message. A Message

will be deleted when the last reference to it disappears; this means that Messages must always be

on the heap.

So that Messages may be transmitted by portholes, there is a class MessageParticle whose data

�eld is an Envelope. This permits it to hold a Message just like any other Envelope object.

6.4.1 Class Envelope

class Envelope has two constructors. The default constructor constructs an \empty" Envelope

(in reality, the envelope is not empty but contains a special \dummy message" { more on this later).

There is also a constructor of the form

Envelope(Message& data);

This constructor creates an Envelope that contains the Message data, which MUST have been

allocated with new.

Message objects have reference counts; at any time, the reference count equals the number of

Envelope objects that contain (refer to) the Message object. When the reference count drops to

zero (because of execution of a destructor or assignment operator on an Envelope object), the

Message will be deleted.

Class Envelope de�nes an assignment operator, copy constructor, and destructor. The main

work of these functions is to manipulate reference counts. When one Envelope is copied to another,

Chapter 6: Particles and Messages 76

in a sense that is separately determined for each type, the same value.

virtual Particle* clone() const = 0;

Produce a second, identical particle (as a rule, one is obtained from the Plasma for the particle

if possible).

virtual Particle* useNew() const = 0;

This is similar to clone, except that the particle is allocated from the heap rather than from

the Plasma.

virtual void die() = 0;

Return the Particle to its Plasma.

virtual void getMessage (Envelope&);

virtual void accessMessage (Envelope&) const;

virtual void operator << (const Envelope&);

These functions are used to implement the Message interface. The default implementation

returns errors for them; it is only if the Particle is really a MessageParticle that they successfully

send or receive a Message from the Particle.

6.3 Arithmetic Particle classes

There are three standard arithmetic Particle classes: IntParticle, FloatParticle, and Complex-

Particle. As their names suggest, each class adds to Particle a private data member of type int,

double (not
oat!), and class Complex, respectively.

When a casting operator or \<<" operator is used on a particle of one of these types, a type

conversion may take place. If the type of the argument of cast matches the type of the particle's

data, the data is simply copied. If the requested operation involves a \widening" conversion (int

to
oat, double, or Complex;
oat to double or Complex; double to Complex), the \obvious" thing

happens. Conversion from double to int rounds to the nearest integer; conversion from Complex

to double returns the absolute value (not the real part!), and Complex to int returns the absolute

value, rounded to the nearest integer.

Chapter 6: Particles and Messages 75

virtual DataType type() const = 0;

Return the type of the particle. DataType is actually just a typedef for const char*, but

when we use DataType, we treat it as an abstract type. Furthermore, two DataType values are

considered the same if they compare equal, which means that we must assure that the same string

is always used to represent a given type.

virtual operator int () const = 0;

virtual operator float () const = 0;

virtual operator double () const = 0;

virtual operator Complex () const = 0;

These are the virtual casting functions, which convert the data in the Particle into the desired

form. The arithmetic Particles support all these functions cleanly. Message particles may return

errors for some of these functions (they must return a value, but may also call Error::abortRun.

virtual StringList print () const = 0;

Return a printable representation of the Particle's data.

virtual void initialize() = 0;

This function zeros the Particle (where this makes sense), or initializes it to some default value.

virtual void operator << (int arg) = 0;

virtual void operator << (double arg) = 0;

virtual void operator << (const Complex& arg) = 0;

These functions are, in a sense, the inverses of the virtual casting operators. They load the

particle with data from arg, performing the appropriate type conversion.

virtual Particle& operator = (const Particle& arg) = 0;

Copy a Particle. As a rule, we permit this only for Particles of the same type, and otherwise

assert an error.

virtual int operator == (const Particle&) = 0;

Compare two particles. As a rule, Particles will be equal only if they have the same type, and,

Chapter 6: Particles and Messages 74

Equivalent to initialize() followed by setCapacity(n).

5.9 Classes for Galaxy ports

Class GalPort is derived from class PortHole (see Section 5.2 [class PortHole], page 57).

Class GalMultiPort is derived from class MultiPortHole (see Section 5.3 [class MultiPortHole],

page 63).

These classes are used by InterpGalaxy (see Section 2.5 [class InterpGalaxy], page 27), and in

other places, to create galaxy ports and multiports that are aliased to some port of a member block.

The constructor for each of these classes takes one argument, the interior port that is to be the

alias. The isItInput and isItOutput functions are implemented by forwarding the request to the

alias.

6 Particles andMessages

6.1 Class Particle

A Particle is a little package that contains data; they represent the principal communication

technique that blocks use to pass results around. They move through PortHoles and Geodesics;

they are allocated in pools called Plasmas. The class Particle is an abstract base class; all real

Particle objects are really of some derived type.

All Particles contain a link �eld that allows queues and stacks of Particles to be manipulated

e�ciently (class ParticleStack is a base class for everything that does this).

Particles also contain virtual operators for loading and accessing the data in various forms; these

functions permit automatic type conversion to be easily performed.

6.2 Particle public members

Chapter 5: Classes for connections between blocks 73

int empty() const;

Return TRUE if the queue is empty, else FALSE.

int full() const;

Return TRUE if the length equals the capacity, else FALSE.

unsigned int capacity() const;

Return the queue's capacity. If unlimited, the largest possible unsigned int on the machine will

be returned.

unsigned int length() const;

Return the number of particles in the queue.

int putq(Particle& p);

Put a copy of particle p into the queue, if there is room. Returns TRUE on success, FALSE if

the queue is already at capacity.

int getq(Particle& p);

Get a particle from the queue, and copy it into the user-supplied particle p. This returns TRUE

on success, FALSE (and p is unaltered) if the queue is empty.

void setCapacity(int sz);

Modify the capacity to sz, if sz is positive or zero. If negative, the capacity becomes in�nite.

void initialize();

Free up the queue contents. Particles are returned to their pools and the queue becomes empty.

void initialize(int n);

Chapter 5: Classes for connections between blocks 72

Particle* get();

This function gets a Particle from the Plasma, creating a new one if the Plasma has only one

Particle on it (we never give away the last Particle).

DataType type();

Returns the type of the particles on the list (obtained by asking the head Particle).

static Plasma* getPlasma(DataType type);

Searches the list of Plasmas for one whose type matches the argument, and returns a pointer to

it. A null pointer is returned if there is no match.

5.8 Class ParticleQueue

Class ParticleQueue implements a queue of Particles. It uses a member of class ParticleStack

to store the particles; it is not implemented by deriving from ParticleStack. It can implement a

queue with �nite or unlimited capacity.

Rather than placing user-supplied Particles on the queue and removing them directly, it takes

over the responsibility for memory management by allocating its own Particles from the Plasma

and returning them as needed. When a user puts a Particle into the queue, the value of the Particle

is copied (with the Particle clone method); similarly, when a user gets a Particle from the queue,

he or she supplies a Particle to received the copied value. The advantage of this is that the user

need not worry about lifetimes of Particles { when to create them, when it is safe to return them

to the Plasma or delete them.

The ParticleQueue default constructor forms an empty, unlimited capacity queue. There is also

a constructor of the form

ParticleQueue(unsigned int cap);

This creates a queue that can hold at most cap particles.

The destructor returns all Particles in the queue to their Plasma.

Chapter 5: Classes for connections between blocks 71

virtual void incCount(int);

virtual void decCount(int);

These methods are available for schedulers such as the SDF scheduler to simulate a run and

keep track of the number of particles on the geodesic. incCount increases the count, decCount

decreases it, They are virtual to allow additional bookkeeping in derived classes.

5.6.2 Geodesic protected members

void portHoleConnect();

This function completes a connection once the originating and destination ports are set up.

PortHole *originatingPort;

PortHole *destinationPort;

These protected members point to my neighbors.

5.7 Class Plasma

Class Plasma is a pool for particles. It is derived from ParticleStack (see Section 5.5 [class

ParticleStack], page 67). Rather than allocating Particles as needed with new and freeing them

with delete, we instead provide an allocation pool for each type of particle, so that very little

dynamic memory allocation activity will take place during simulation runs.

All Plasma objects known to the system are linked together. As a rule, there is one Plasma for

each type of particle; however, each of these objects is of type Plasma, not a derived type. At all

times, a Plasma has at least one Particle in it; that Particle's virtual functions are used to clone

other particles as needed, determine the type, etc.

The constructor takes one argument, a reference to a Particle. It creates a one-element Parti-

cleStack, and links the Plasma into a linked list of all Plasma objects.

The put function (for putting a particle into the Plasma) adds a particle to the Plasma's

ParticleStack. As a rule, it should not be used directly; the Particle's diemethod will automatically

add it to the right Plasma (future releases may protect this method to prevent its general use).

Chapter 5: Classes for connections between blocks 70

Return my source and destination ports, respectively.

virtual void initialize();

In the default implementation, this function initializes the number of Particles to that given by

the numInitialParticles �eld (the value returned by numInit(); these Particles are obtained from

the Plasma (allocation pool) for the source port. The particles will have zero value for numeric

particles, and will hold the \empty message" for message Particles.

void put(Particle* p);

Put a particle into the Geodesic (using a FIFO discipline).

Particle* get();

Retrieve a particle from the Geodesic (using a FIFO discipline). Return a null pointer if the

Geodesic is empty.

void pushBack(Particle* p);

Push a Particle back into the Geodesic (onto the front of the queue, instead of onto the back of

the queue as put does).

int size() const;

Return the number of Particles on the Geodesic at the current time.

int numInit() const;

Return the number of initial particles. This call is valid at any time. Immediately after

initialize, size and numInit return the same value (and this should be true for any derived

Geodesic as well), but this will not be true during execution (where numInit stays the same and

size changes).

StringList print(int verbose) const;

Print information on the Geodesic, overrides NamedObj function.

Chapter 5: Classes for connections between blocks 69

virtual PortHole* setSourcePort (GenericPort &src, int delay = 0);

Set the source port and the number of initial particles. The actual source port is determined

by calling newConnection on src; thus if src is a MultiPortHole, the connection will be made to

some port withing that MultiPortHole, and aliases will be resolved. The return value is the \real

porthole" used.

In the default implementation, if there is already a destination port, any preexisting connection

is broken and a new connection is completed.

virtual PortHole* setDestPort (GenericPort &dest);

Set the destination port to dest.newConnection(). The return value is the \real porthole"

used.

In the default implementation, if there is already a source port, any preexisting connection is

broken and a new connection is completed.

virtual int disconnect (PortHole & p);

In the default implementation, if p is either the source port or the destination port, both the

source port and destination port are set to null. This is not enough to break a connection; as a

rule, disconnect should be called on the porthole, and that method will call this one as part of its

work.

virtual void setDelay (int newDelay);

Modify the delay (number of initial tokens) of a connection. The default implementation simply

changes a count.

virtual int isItPersistent() const;

Return true if the Geodesic is persistent (may exist in a disconnected state) and false otherwise.

The default implementation returns false.

PortHole* sourcePort () const;

PortHole* destPort () const;

Chapter 5: Classes for connections between blocks 68

int moreThanOne() const;

Return TRUE (1) if the ParticleStack has two or more particles, otherwise 0. This is provided

to speed up the derived class Plasma a bit.

void freeup();

Returns all Particles on the stack to their Plasma (the allocation pool for that particle type).

There is one protected data member:

Particle* head;

This is the head of the list (or the top of the stack).

5.6 Class Geodesic

A Geodesic implements the connection between a pair, or a larger collection, of PortHoles.

A Geodesic may be temporary, in which case it is deleted when the connection it implements

is broken, or it can be permanent, in which case it can live in disconnected form. As a rule,

temporary geodesics are used for point-to-point connections and permanent geodesics are used for

netlist connections. In the latter case, the Geodesic has a name and is a member of a galaxy; hence,

Geodesic is derived from NamedObj (see Section 1.8 [class NamedObj], page 11).

The baseclass Geodesic, which is temporary, su�ces for most simulation and code generation

domains. In fact, in a number of these domains it contains unused features, so it is perhaps too

\heaviweight" an object. A Geodesic contains a ParticleStack member which is used as a queue

for movement of Particles between two portholes; it also has an originating port and a destination

port.

A Geodesic can be asked to have a speci�c number of initial particles. When initialized, it

creates that number of particles in its ParticleStack; these particles are obtained from the Plasma

of the originating port (so they will be of the correct type).

5.6.1 Geodesic public members

Chapter 5: Classes for connections between blocks 67

5.5 Class ParticleStack

ParticleStack is an e�cient baseclass for the implementation of structures that organize Particles.

As Particles have a link �eld, ParticleStack is simply implemented as a linked list of Particles.

Strictly speaking, a dequeue is implemented; particles can be inserted from either end. Parti-

cleStack has some odd attributes; it is designed for very e�cient implementation of Geodesic and

Plasma to move around large numbers of Particle objects very e�ciently.

ParticleStack(Particle* h);

The constructor takes a Particle pointer. If it is a null pointer an empty ParticleStack is created.

Otherwise the stack has one particle. Adding a Particle to a ParticleStack modi�es that Particle's

link �eld; therefore a Particle can belong to only one ParticleStack at a time.

~ParticleStack();

The destructor deletes all Particles EXCEPT for the last one; we do not delete the last one

because it is the \reference" particle (for Plasma) and is normally not dynamically created (this

code may be moved in a future release to the Plasma destructor, as this behavior is needed for

Plasma and not for other types of ParticleStack).

void put(Particle* p);

Push p onto the top (or head) of the ParticleStack.

Particle* get();

Pop the particle o� the top (or head) of the ParticleStack.

void putTail(Particle* p);

Add p at the bottom (or tail) of the ParticleStack.

int empty() const;

Return TRUE (1) if the ParticleStack is empty, otherwise 0.

Chapter 5: Classes for connections between blocks 66

5.4.1 Class AutoFork

An AutoFork object has an associated Geodesic and possibly an associated Fork star (which it

creates and deletes as needed). It is normally used in a multiply inherited object, inherited from

AutoFork and some kind of Geodesic; hence the associated Geodesic is the object itself.

The constructor for class AutoFork takes a single argument, a reference to the Geodesic. It sets

the pointer to the fork star to be null.

The destructor removes the fork star, if one was created.

There are two public member functions, setSource and setDest.

PortHole* setSource(GenericPort& port, int delay = 0);

If there is already an originating port for the geodesic, this method returns an error. Otherwise

it connects it to the node.

PortHole* setDest(GenericPort& port, int alwaysFork = 0);

This function may be used to add any number of destinations to the port. Normally, when there

is more than one output, a Fork star is created and inserted to support the multi-way connection,

but if there is only one output, a direct connection is used. However, if alwaysFork is true, a Fork

is inserted even for the �rst output. When the fork star is created, it is inserted in the block list

for the parent galaxy (the parent of the geodesic).

5.4.2 Class AutoForkNode

Class AutoForkNode is multiply inherited from Geodesic and AutoFork.

This class rede�nes isItPersistent to return TRUE, and rede�nes the setSourcePort and

setDestPort functions to call the setSource and setDest functions of AutoFork. The exact same

form could be used to generate other types of auto-forking nodes (that is, this class could have

been done with a template).

Chapter 5: Classes for connections between blocks 65

Sets the Plasma for all the portholes in the multiporthole.

5.3.2 MultiPortHole protected members

PortList ports;

The list of portholes (should be protected).

const char* newName();

This function generates names to be used for contained PortHoles. They are saved in the hash

table provided by the hashstring function (see Section 1.3 [utility functions], page 2).

PortHole& installPort(PortHole& p);

This function adds a newly created port to the multiporthole. Derived MultiPortHole classes

typically rede�ne newPort to create a porthole of the appropriate type, and then use this function

to register it and install it.

void delPorts();

This function deletes all contained portholes.

5.4 AutoFork and AutoForkNode

AutoForks are a method for implementing netlist-style connections. An AutoForkNode is a type

of Geodesic built on top of AutoFork. The classes are separate to allow a \mixin approach", so

that if a domain requires special actions in its Geodesics, these special actions can be written only

once and be implemented in both temporary and permanent connections.

The implementation technique used is to automatically insert a Fork star to allow the n-way

connection; this Fork star is created by invoking KnownBlock::makeNew("Fork"), which works

only for domains that have a fork star.

Chapter 5: Classes for connections between blocks 64

void busConnect (MultiPortHole& peer, int width, int delay = 0);

Makes a bus connection with another multiporthole, peer, with width width and delay delay.

If there is an existing bus connection, it is changed as necessary; an existing bus connection may

be widened, or, if connected to a di�erent peer, all constituent portholes are deleted and a bus is

made from scratch.

int isItMulti() const;

Returns TRUE.

MultiPortHole& setPort(const char* portName,

Block* parent,DataType type = FLOAT);

int numberPorts() const;

Return the number of PortHoles in the MultiPortHole.

virtual PortHole& newPort();

Add a new physical port to the MultiPortHole list.

MultiPortHole& realPort();

Return the real MultiPortHole associated with me, translating any aliases.

void setAlias (MultiPortHole &blockPort);

Set my alias to blockPort.

virtual PortHole& newConnection();

Return a new port for connections. If there is an unconnected porthole, return the �rst one;

otherwise make a new one.

Plasma* setPlasma(Plasma *useType = NULL);

Chapter 5: Classes for connections between blocks 63

Particle** previous(int o�set) const;

Find the position in the bu�er o�set positions in the past relative to the current position. The

current position is unchanged. o�set must not be negative, and must be less than the bu�er size,

or a null pointer is returned an an appropriate error message is set; this message can be accessed

by the errMsg function.

int size() const;

Return the size of the bu�er.

static const char* errMsg();

Return the last error message (currently, only previous() sets error messages).

5.3 Class MultiPortHole

A MultiPortHole is an organized connection of related PortHoles. Any number of PortHoles

can be created within the PortHole; their names have the form mphname#1, mphname#2, etc.,

where mphname is replaced by the name of the MultiPortHole. When a PortHole is added to the

MultiPortHole, it is also added to the porthole list of the Block that contains the MultiPortHole. As

a result, a Block that contains a MultiPortHole has, in e�ect, a con�gurable number of portholes.

A pair of MultiPortHoles can be connected by a \bus connection". This technique creates n

PortHoles in each MultiPortHole and connects them all \in parallel".

The MultiPortHole constructor sets the \peer MPH" to 0. The destructor deletes any constituent

PortHoles.

5.3.1 MultiPortHole public members

void initialize();

Does nothing.

Chapter 5: Classes for connections between blocks 62

5.2.3 CircularBu�er { a class used to implement PortHole

This class is misnamed; it is not a general circular bu�er but rather an array of pointers to

Particle that is accessed in a circular manner. It has a pointer representing the current position.

This pointer can be advanced or backed up; it wraps around the end when this is done. The class

also has a facility for keeping track of error conditions.

The constructor takes an integer argument, the size of the bu�er. It creates an array of pointers

of that size and sets them all to null. The destructor returns any Particles in the bu�er to their

Plasma and then deletes the bu�er.

void reset();

Set the access pointer to the beginning of the bu�er.

Particle** here() const;

Return the access pointer. Note the double indirection; since the bu�er contains pointers to

Particles, the bu�er pointer points to a pointer.

Particle** next();

Advance the pointer one position (circularly) and return the new value.

Particle** last();

Back up the pointer one position (circularly) and return the new value.

void advance(int n);

Advance the bu�er pointer by n positions. This will not work correctly if n is larger than the

bu�er size. n is assumed positive.

void backup(int n);

Back up the bu�er pointer by n positions. This will not work correctly if n is larger than the

bu�er size. n is assumed positive.

Chapter 5: Classes for connections between blocks 61

Geodesic* myGeodesic;

My geodesic, which connects to my peer. Initialized to NULL.

PortHole* farSidePort;

The port on the far side of the connection. NULL for disconnected ports.

Plasma* myPlasma;

Pointer to the Plasma where we get our Particles or replace unused Particles. Initialized to

NULL.

CircularBuffer* myBuffer;

Bu�er where the Particles are stored. This is actually a bu�er of pointers to Particles, not to

Particles themselves.

int bufferSize;

This gives the size of the CircularBu�er to allocate.

void getParticle();

Get numberTokens particles from the Geodesic and move them into my CircularBu�er. Actually,

only Particles move. The same number of existing Particles are returned to their Plasma, so that

the total number of Particles contained in the bu�er remains constant.

void putParticle();

Move numberTokens particles from my CircularBu�er to the Geodesic. Replace them with the

same number of Particles from the Plasma.

void clearParticle();

Clear numberTokens particles in the CircularBu�er. Leave the bu�er position pointing to the

last one.

Chapter 5: Classes for connections between blocks 60

only delays in data
ow domains).

Geodesic* geo();

Return a pointer to my Geodesic.

Plasma* setPlasma(Plasma *useType = NULL);

Initialize the Plasma, which has the e�ect of resolving the type, since the Particles provided by

the Plasma determine the type of data that can be transferred. This function should be protected.

int index() const;

Return the index value. This is a mechanism for assigning all the portholes in a universe a

unique integer index, for use in table-driven schedulers.

MultiPortHole* getMyMultiPortHole() const;

Return the MultiPortHole that spawned this PortHole, or NULL if there is no such MultiPort-

Hole.

virtual void setDelay (int newDelayValue);

Set the delay value for the connection.

void adjustDelays(int numNewDelays);

Adjust the number of delays on the Geodesic: change the number to numNewDelays by using

setDelay and re-initialize to put the change into e�ect (name could be better).

virtual Geodesic* allocateGeodesic();

Allocate a return a Geodesic compatible with this type of PortHole. This may become a pro-

tected member in future Ptolemy releases.

5.2.2 PortHole protected members

Chapter 5: Classes for connections between blocks 59

virtual void receiveData();

Used to receive data in derived classes. The default implementation does nothing.

virtual void sendData();

Used to send data in derived classes. The default implementation does nothing.

Particle& operator % (int delay);

This operator returns a reference to a Particle in the PortHole's bu�er. A delay value of 0

returns the \newest" particle. In data
ow domains, the argument represents the delay associated

with that particular particle.

void setMaxDelay(int delay);

Set the maximum delay that past Particles can be accessed { defaults to zero if never called.

DataType resolvedType () const;

Return the datatype computed by PortHole::initialize to resolve type conversions. For

example, if an INT output porthole is connected to a FLOAT input porthole, the resolved type

(the type of the Particles that travel between the ports) will be FLOAT. A null pointer will be

returned if the type has not been set, e.g. before initialization.

int numXfer() const;

Returns the nominal number of tokens transferred per execution of the PortHole. It returns the

value of the protected member numberTokens.

int numTokens() const;

Returns the number of particles on my Geodesic.

int numInitDelays() const;

Returns the number of initial delays on my Geodesic (the initial tokens, strictly speaking, are

Chapter 5: Classes for connections between blocks 58

The destructor disconnects the PortHole, and if there is a parent Block, removes itself from the

parent's porthole list.

PortHole& setPort(const char* portName, Block* parent,

DataType type = FLOAT);

This function sets the name of the porthole, its parent, and its type.

void initialize();

This function is responsible for initializing the internal bu�ers of the porthole in preparation for

a run.

virtual void disconnect(int delGeo = 1);

Remove a connection, and optionally attempt to delete the geodesic. The is set to zero when

the geodesic must be preserved for some reason (for example, from the Geodesic's destructor). The

Geodesic is deleted only if it is \temporary"; we do not delete \persistent" geodesics when we

disconnect them.

PortHole* far() const;

Return the PortHole we are connected to.

void setAlias (PortHole& blockPort);

Set my alias to blockPort.

int atBoundary() const;

Return TRUE if this PortHole is at the wormhole boundary (if its peer is an inter-domain

connection); FALSE otherwise.

virtual EventHorizon* asEH();

Return myself as an EventHorizon, if I am one. The baseclass returns a null pointer. Even-

tHorizon objects (objects multiply inherited from EventHorizon and some type of PortHole) will

rede�ne this appropriately.

Chapter 5: Classes for connections between blocks 57

bitWord setAttributes(const Attribute& attr);

Set my attributes (some bits are turned on and others are turned o�).

void setAlias (GenericPort& gp);

Set gp to be my alias. The aliasFrom pointer of gp is set to point to me.

5.1.3 GenericPort protected members

GenericPort* translateAliases();

The above is a protected function. If this function is called on a port with no alias, the address

of the port itself is returned; otherwise, translateAliases(*alias()) is returned.

5.2 Class PortHole

PortHole is the means that Blocks use to talk to each other. It is derived from GenericPort; as

such, it has a type, an optional alias, and is optionally a member of a ring of ports of the same

type connected by typePort pointers. It guarantees that alias() always returns a PortHole.

In addition, a PortHole has a peer (another port that it is connected to, which is returned by

far()), a Geodesic (a path along which particles travel between the PortHole and its peer), and a

Plasma (a pool of particles, all of the same type). In simulation domains, during the execution of

the simulation objects known as Particles traverse a circular path: from an output porthole through

a Geodesic to an input porthole, and �nally to a Plasma, where they are recirculated back to the

input porthole.

Like all NamedObj-derived objects, a PortHole has a parent Block. It may also be a member

of a MultiPortHole, which is a logical group of PortHoles.

5.2.1 PortHole public members

The constructor sets just about everything to null pointers.

Chapter 5: Classes for connections between blocks 56

gp = gp->typePort();

}

}

}

is guaranteed to terminate and not to dereference a null pointer.

inline int hidden(const GenericPort& p)

IMPORTANT: hidden is not a member function of GenericPort, but is a \plain function". It

returns TRUE if the port in question has the HIDDEN attribute.

5.1.2 other GenericPort public members

virtual PortHole& newConnection();

Return a reference to a porthole to be used for new connections. Class PortHole uses this one

unchanged; MultiPortHole has to create a new member PortHole.

GenericPort& setPort(const char* portName, Block* blk, DataType typ=FLOAT);

Set the basic PortHole parameters: the name, parent, and datatype.

void inheritTypeFrom(GenericPort& p);

Set up a port for determining the type of ANYTYPE connections. typePort pointers form a circular

loop.

virtual Plasma* setPlasma(Plasma *useType = NULL) = 0;

This function associates the appropriate pool of particles, called a Plasma, with the PortHole

or MultiPortHole. The e�ect is also to determine how type conversion will be performed, since the

type of a porthole is determined by its associated Plasma.

virtual void connect(GenericPort& destination,int numberDelays);

Connect me with the indicated peer.

Chapter 5: Classes for connections between blocks 55

Return my DataType. This may be one of the DataType values associated with Particle classes,

or the special type ANYTYPE, which indicates that the type will be resolved by the setPlasma

function using information from connected ports and typePort pointers.

GenericPort* alias() const;

Return my alias, or a null pointer if I have no alias. Generally, Galaxy portholes have aliases

and Star portholes do not, but this is not a strict requirement.

GenericPort* aliasFrom() const;

Return the porthole that I am the alias for (a null pointer if none). It is guaranteed that if gp

is a pointer to GenericPort and if gp->alias() is non-null, then the boolean expression

gp->alias()->aliasFrom() == gp

is always true.

bitWord attributes() const;

Return my attributes. Attributes are a series of bits.

GenericPort& realPort();

const GenericPort& realPort() const;

Return the real port after resolving any aliases. If I have no alias, then a reference to myself is

returned.

GenericPort* typePort() const;

Return another generic port that is constrained to have the same type as me (0 if none). If a

non-null value is called, successive calls will form a circular linked list that always returns to its

starting point; that is, the loop

void printLoop(GenericPort& g) {

if (g->typePort()) {

GenericPort* gp = g;

while (gp->typePort() != g) {

cout << gp->fullName() << "\n";

Chapter 5: Classes for connections between blocks 54

5 Classes for connections between blocks

This chapter describes the classes that implement connections between blocks. For simulation

domains, these classes are responsible for moving objects called Particles (see Section 6.1 [class

Particle], page 74) from one Block to another. For code generation domains, the Particles typically

only move during scheduling and these objects merely provide information on the topology.

5.1 Class GenericPort

The class GenericPort is a base class that provides common elements between class PortHole (see

Section 5.2 [class PortHole], page 57) and class MultiPortHole (see Section 5.3 [class MultiPortHole],

page 63). Any GenericPort object can be assumed to be either one or the other; we recommend

avoiding deriving any new objects directly from GenericPort.

GenericPort is derived from class NamedObj (see Section 1.8 [class NamedObj], page 11).

GenericPort provides several basic facilities: aliases, which specify that another GenericPort

should be used in place of this port, types, which specify the type of data to be moved by the

port, and typePort, which speci�es that this port has the same type as another port. When a

GenericPort is destroyed, any alias or typePort pointers are automatically cleaned up, so that

other GenericPorts are never left with dangling pointers.

5.1.1 GenericPort query functions

virtual int isItInput () const;

virtual int isItOutput () const;

virtual int isItMulti () const;

Each of the above functions returns TRUE (1) or FALSE (0).

StringList print (int verbose = 0) const;

Print human-readable information on the wormhole.

DataType type () const;

Chapter 4: Interfacing domains { wormholes and related classes 53

4.4 Class FromEventHorizon

A FromEventHorizon is responsible for converting from a universal representation to a domain-

speci�c representation. It is derived from EventHorizon.

FromEventHorizon(PortHole* p);

The constructor simply calls the EventHorizon constructor.

void initialize();

The initialize function prepares the object for execution.

void putData();

This protected member transfers data from Universal EventHorizon to outside.

void transferData();

This protected member transfers data from peer event horizon to me.

virtual int ready();

This is a protected member. By default, it always returns TRUE (1). Derived classes have it

return TRUE if the event horizon is \ready" (there is enough data for execution to proceed), and

false otherwise.

4.5 ClassWormMultiPort

The class WormMultiPort, which is derived from MultiPortHole (see Section 5.3 [class Multi-

PortHole], page 63), exists to handle the case where a galaxy with a multiporthole is imbedded in a

wormhole. Its newPort function correctly creates a pair of EventHorizon objects when a new port is

created in the multiporthole. Instances of this object are created by Wormhole::buildEventHorizons

when the inner galaxy has one or more MultiPortHole objects.

Chapter 4: Interfacing domains { wormholes and related classes 52

EventHorizon* ghostPort;

This is the peer event horizon.

Wormhole* wormhole;

This points to the Wormhole I am a member of.

int tokenNew;

double timeMark;

TimeMark of the current data, which is necessary for interface of two domains. This may become

a private member in future versions of Ptolemy.

4.3 Class ToEventHorizon

A ToEventHorizon is responsible for converting from a domain-speci�c representation to a uni-

versal representation. It is derived from EventHorizon.

ToEventHorizon(PortHole* p);

The constructor simply calls the baseclass constructor, passing along its argument.

void initialize();

The initialize function prepares the object for execution.

void getData();

This protected member transfers data from the outside to the universal eventhorizon (myself).

void transferData();

This protected member transfers data from myself to my peer FromEventHorizon (the ghost-

Port).

Chapter 4: Interfacing domains { wormholes and related classes 51

This connects another EventHorizon to myself and makes it my \ghost port".

virtual int isItInput() const;

virtual int isItOutput() const;

Say if I am an input or an output.

virtual void setEventHorizon(inOutType inOut, const char* portName,

Wormhole* parentWormhole, Star* parentStar,

DataType type = FLOAT, unsigned numTokens = 1);

Sets parameters for the EventHorizon.

double getTimeMark();

void setTimeMark(double d);

Get and set the time mark. The time mark is an internal detail used for bookkeeping by

schedulers.

virtual void initialize();

Scheduler *innerSched();

Scheduler *outerSched();

These methods return a pointer to the scheduler that lives inside the wormhole, or outside the

wormhole, respectively.

4.2.3 EventHorizon protected members

void moveFromGhost(EventHorizon& from, int numParticles);

Move numParticles from the bu�er of from, another EventHorizon, to mine (the object on which

this function is called). This is used to implement ToEventHorizon::transferData.

CircularBuffer* buffer();

Access the myBu�er of the porthole.

Chapter 4: Interfacing domains { wormholes and related classes 50

The other, derived from FromEventHorizon, converts from the universal form to the domain-speci�c

form.

4.2.1 How EventHorizons are used

Generally, EventHorizons are used in pairs to form a connection across a domain boundary be-

tween domain XXX and domain YYY. An object of class XXXToUniversal (derived from XXXPort-

Hole and ToEventHorizon) and an object of class YYYFromUniversal (derived from YYYPortHole

and FromEventHorizon) are inserted between the ordinary, domain-speci�c PortHoles. The far()

member of the XXXToUniversal points to the XXXPortHole; the ghostAsPort() member points

to the YYYFromUniversal object. Similarly, for the YYYFromUniveral object, far() points to the

YYYPortHole and ghostAsPort() points to the XXXToUniversal object.

These pairs of EventHorizons are created by the buildEventHorizonsmember function of class

Wormhole.

4.2.2 EventHorizon public members

EventHorizon(PortHole* self);

The constructor for EventHorizon takes one argument, representing (for derived classes that call

this constructor from their own), \myself" as a PortHole (a pointer to the PortHole part of the

object).

The destructor is declared virtual and does nothing.

PortHole* asPort();

This returns \myself as a PortHole".

PortHole* ghostAsPort();

This returns a pointer to the \matching eventhorizon" as a porthole.

virtual void ghostConnect(EventHorizon& to);

Chapter 4: Interfacing domains { wormholes and related classes 49

This function creates the EventHorizon objects that connect the inner galaxy ports to the

outside. A pair of EventHorizons is created for each galaxy port. It is typically called by the

constructor for the XXXWormhole, where XXX is the outer domain name.

void freeContents();

This function deletes the event horizons and the inside galaxy. It is intended to be called from

XXXWormhole destructors. It cannot be part of the Wormhole constructor due to an ordering

problem (we want to assure that it is called before the destructor for either of XXXWormhole's

two baseclasses is called).

virtual double getStopTime() = 0;

Get the stopping condition for the inner domain. This is a pure virtual function and must be

rede�ned in the derived class.

virtual void sumUp();

This function is called by Wormhole::run after running the inner domain. The default imple-

mentation does nothing. Derived wormholes can rede�ne it to put in any \summing up" work that

is required after running the inner domain.

Galaxy& gal;

The member gal is a reference to the inner galaxy of the Wormhole.

4.2 Class EventHorizon

Class EventHorizon is another example of a mixin class; EventHorizon has the same relationship

to PortHoles as Wormhole has to Stars. The name is chosen from cosmology, representing the point

at which an object disappears from the outside universe and enters the interior of a black hole,

which can be thought of as a di�erent universe entirely.

As for wormholes, we never consider objects that are \just an EventHorizon". Instead, all objects

that are actually used are multiply inherited from EventHorizon and from some type of PortHole

class. For each type of domain we require two types of EventHorizon. The �rst, derived from

ToEventHorizon, converts from a format suitable for a particular domain to the \universal form".

Chapter 4: Interfacing domains { wormholes and related classes 48

This function executes the inside of the wormhole for the appropriate amount of time.

const char* insideDomain() const;

This function returns the name of the inside domain.

void setStopTime(double stamp);

This function sets the stop time for the inner universe.

Wormhole(Star& self, Galaxy& g, const char* targetName = 0);

Wormhole(Star& self, Galaxy& g, Target* innerTarget = 0);

The above two signatures represent the constructors provided for class Wormhole. We never use

plain Wormholes; instead we always have objects derived from Wormhole and some kind of Star.

For example:

class SDFWormhole : public Wormhole, public SDFStar {

public:

SDFWormhole(Galaxy& g,Target* t) : Wormhole(*this,g,t) {

buildEventHorizons();

}

};

The �rst argument to the constructor should always be a reference to the object itself, and

represents \the wormhole as a star". The second argument is the inner galaxy. The third argument

describes the target of the Wormhole, and may be provided either as a Target object or by name,

in which case it is created by using the KnownTarget class.

Scheduler* outerSched();

This returns a pointer to the scheduler for the outer domain (the one that lives above the

wormhole). The scheduler for the inner domain for derived wormhole classes can be obtained from

the scheduler() method.

4.1.2 Wormhole protected members

void buildEventHorizons ();

Chapter 4: Interfacing domains { wormholes and related classes 47

to be interfaced. It is this ability to integrate di�erent domains that sets Ptolemy apart from other

systems.

4.1 ClassWormhole

A wormhole for a domain is much like a star belonging to that domain, but it contains pointers

to a subsystem that operates in a di�erent domain. The interface to that other domain is through

a \universal event horizon". The wormhole design, therefore, does not depend on the domain it

contains, but only on the domain in which it is used as a block. It must look like a star in that

outer domain.

The base Wormhole class is derived from class Runnable (see Section 2.6 [class Runnable],

page 31), just like the class Universe (see Section 2.7 [class Universe], page 32). Every member of

the Runnable class has a pointer to a component Galaxy (see Section 2.3 [class Galaxy], page 23)

and a Target (see Section 3.1 [class Target], page 35).

Like a Universe, a Wormhole can perform the scheduling actions on the component Galaxy. A

Wormhole is di�erent from a Universe in that it is not a stand-alone object. Instead, it is triggered

from the outer domain to initiate the scheduling. Also, since Wormhole is an abstract baseclass,

you cannot create an object of class Wormhole; only derived Wormholes can be created.

Each domain has a derived Wormhole class. For example, the SDF domain has class SDFWorm-

hole. This domain-speci�c Wormhole is derived from not only the base Wormhole class but also

from the domain-speci�c star class, SDFStar. This multiple inheritance realizes the inherent nature

of the Wormhole. First, the Wormhole behaves exactly like a Star from the outer domain (SDF)

since it is derived from SDFStar. Second, internally it can encapsulate an entire foreign domain

with a separate Galaxy and a separate Target and Scheduler.

4.1.1 Wormhole public members

void setup();

The default implementation calls initTarget.

int run();

Chapter 4: Interfacing domains { wormholes and related classes 46

static int cancel(SimAction* action);

Cancel action. Warning: argument is deleted.

Future versions will provide more ways of cancelling actions.

3.4.3 SimControl interrupts and polling

Features in this section will be used in a new graphic interface; they are mostly untested at this

point.

The SimControl class can handle interrupts and can register a polling function that is called for

every star execution. It only provides one handler.

static void catchInt(int signo = -1, int always = 0);

This signal installs a simple interrupt handler for the signal with Unix signal number signo. If

always is true, the signal is always caught; otherwise the signal is not caught if the current status of

the signal is that it is ignored (for example, processes running in the background ignore interrupt

signals from the keyboard). This handler simply sets the SimControl interrupt bit; on the next call

to haltRequested, the user-speci�ed interrupt handler is called.

static SimHandlerFunction setInterrupt(SimHandlerFunction f);

Set the user-speci�ed interrupt handler to f, and return the old handler, if any. This function is

called in response to any signals speci�ed in catchInt.

static SimHandlerFunction setPoll(SimHandlerFunction f);

Register a function to be called by haltRequested if the poll
ag is set. Returns old handler if

any.

4 Interfacing domains { wormholes and related classes

This section describes the classes that implement the mechanism that allows di�erent domains

Chapter 3: Control of Execution and Error Reporting 45

static void clearHalt ();

This function clears the halt and error
ags.

3.4.2 Preactions and Postactions

SimControl can register a function that will be called before or after the execution of a particular

star, or before or after the execution of all stars. A function that is called before a star is a preaction;

on that is called after a star is a postaction.

The functions that can be registered have take two arguments: a pointer to a Star (possibly

null), and a const char* pointer that points to a string (possibly null). The type de�nition

typedef void (*SimActionFunction)(Star*,const char*);

gives the name SimActionFunction to functions of this type; several SimControl functions take

arguments of this form.

static SimAction* registerAction(SimActionFunction action, int pre,

const char* textArg = 0, Star* which = 0);

Register a preaction or postaction. If "pre" is TRUE it is a preaction. If textArg is given, it is

passed as an argument when the action function is called. If which is 0, the function will be called

unconditionally by doPreActions (if it is a preaction) or doPostActions (if it is a postaction;

otherwise it will only be called if the star being executed has the same address as which.

The return value represents the registered action; class SimAction is treated as an \opaque

class" (I'm not telling you what is in it) which can be used for cancel calls.

static int doPreActions(Star * which);

static int doPostActions(Star * which);

Execute all pre-actions, or post-actions, for a the particular Star which. The which pointer

is passed to each action function, along with any text argument declared when the action was

registered.

Return TRUE if no halting condition arises, FALSE if we are to halt.

Chapter 3: Control of Execution and Error Reporting 44

This function marks the object obj, if marking is implemented for this interface. It is a no-op

if marking is not implemented.

3.4 Class SimControl

The SimControl class controls execution of the simulation. It has some global status
ags that

indicate whether there has been an error in the execution or if a halt has been requested. It also

has mechanisms for registering functions to be called before or after star executions, or in response

to a particular star's execution, and responding to interrupts.

This class interacts with the Error class (which sets error and halt bits) and the Star class (to

permit execution of registered actions when stars are �red). Schedulers and Targets are expected

to monitor the SimControl halt
ag to halt execution when errors are signaled and halts are

requested. Once exceptions are commonplace in C++ implementations, a cleaner implementation

could be produced.

3.4.1 Access to SimControl status
ags.

SimControl currently has four global status bits: the error bit, the halt bit, the interrupt bit,

and the poll bit. These functions set, clear, or report on these bits.

static void requestHalt ();

This function sets the halt bit. The e�ect is to cause schedulers and targets to cease execution.

It is important to note that this function does not alter
ow of control; it only sets a
ag.

static void declareErrorHalt ();

This is the same as requestHalt except that it also sets the error bit. It is called, for example,

by Error::abortRun.

static int haltRequested ();

This function returns true if the halt bit is set, false otherwise. If the poll or interrupt bits are

set, it calls handlers for them (see the subsection describing these).

Chapter 3: Control of Execution and Error Reporting 43

3.3 Class Error

Class Error is used for error reporting. While the interfaces to these functions are always the

same, di�erent user interfaces provide di�erent implementations: `ptcl' connects to the Tcl error

reporting mechanism, `pigi' pops up windows containing error messages, and `interpreter' simply

prints messages on the standard error stream. All member functions of Error are static.

There are four \levels" of messages that may be produced by the error facility: Error::abortRun

is used to report an error and cause execution of the current universe to halt. Error::error reports

an error. Error::warn reports a warning, and Error::message prints an information message that

is not considered an error.

Each of these four functions is available with two di�erent signatures. For example:

static void abortRun (const char*, const char* = 0, const char* = 0);

static void abortRun (const NamedObj& obj, const char*, const char* = 0,

const char* = 0);

The �rst form produces the error message by simply concatenating its arguments (the second

and third arguments may be omitted); no space is added.

The second form prepends the full name of the obj argument, a colon, and a space to the text

provided by the remaining arguments. If the implementation provides a marking facility, the object

named by obj is marked by the user interface (at present, the interface associated with `pigi' will

highlight the object if its icon appears on the screen).

The remaining static Error functions error, warn, and message have the same signatures as

does abortRun (there are the same two forms for each function).

In addition, the Error class provides access to the marking facility, if it exists:

static int canMark();

This function returns TRUE if the interface can mark NamedObj objects (generally true for

graphic interfaces), and FALSE if it cannot (generally true for text interfaces).

static void mark (const NamedObj& obj);

Chapter 3: Control of Execution and Error Reporting 42

Set the target pointer to point to t.

Target& target ();

Return the target.

virtual void compileRun();

Call code-generation functions in the Target to generate code for a run. In the base class, this

just causes an error.

The following functions now forward requests to SimControl, which is responsible for controlling

the simulation.

static void requestHalt();

Calls SimControl::declareErrorHalt.

NOTE: SimControl::requestHalt only sets the halt bit, not the error bit.

static int haltRequested();

Calls SimControl::haltRequested. Returns TRUE if the execution should halt.

static void clearHalt();

Calls SimControl::clearHalt. Clears the halt and error bits.

3.2.2 Scheduler protected members

The following two data members are protected.

// current time of the schedule

double currentTime;

// flag set if stop before deadlocked.

// for untimed domain, it is always FALSE.

int stopBeforeDeadlocked;

Chapter 3: Control of Execution and Error Reporting 41

Retrieve the stop time.

virtual void resetStopTime(double limit);

Reset the stopping condition for the wormhole containing this Scheduler. The default implemen-

tation simply calls setStopTime with the same argument. For some derived types of schedulers,

additional actions will be performed as well by derived Scheduler classes.

virtual int run() = 0;

Run the scheduler until the stop time is reached, an error condition occurs, or it stops for some

other reason.

virtual void setCurrentTime(double val);

Set the current time for the scheduler.

virtual StringList displaySchedule();

Return the schedule, if this makes sense.

double now() const;

Return the current time (the value of the protected member currentTime).

int stopBeforeDeadlocked() const;

Return the value of the stopBeforeDeadFlag protected member. It is set in timed domains to

indicate that a scheduler inside a wormhole was suspended even though it had more work to do.

virtual const char* domain() const;

Return the domain for this schedule. This method is no longer used and will be removed from

future releases; it dates back to the days in which a given scheduler could only be used in one

domain.

void setTarget(Target& t);

Chapter 3: Control of Execution and Error Reporting 40

3.2 Class Scheduler

Scheduler objects determine the order of execution of Stars. As a rule, they are created and

managed by Targets. Some schedulers, such as those for the SDF domain, completely determine

the order of execution of blocks before any blocks are executed; others, such as those for the DE

domain, supervise the execution of blocks at run time.

The Scheduler class is an abstract base class; you can't have an object of class Scheduler.

All schedulers have a pointer to the Target that controls them as well as to a Galaxy. Usually

the Galaxy will be the same one that the Target points to, but this is not a requirement.

The Scheduler constructor just zeros its target, galaxy pointers. The destructor is virtual and

do-nothing.

3.2.1 Scheduler public members

virtual void setGalaxy(Galaxy& g);

This function sets the galaxy pointer to point to g.

Galaxy* galaxy();

This function returns the galaxy pointer.

virtual void setup() = 0;

This function (in derived classes) sets up the schedule. In compile-time schedulers such as those

for SDF, a complete schedule is computed; others may do little more than minimal checks.

virtual void setStopTime(double limit) = 0;

Set the stop time for the scheduler. Schedulers have an abstract notion of time; this determines

how long the scheduler will run for.

virtual double getStopTime() = 0;

Chapter 3: Control of Execution and Error Reporting 39

This method permits two di�erent Target objects to share child Targets. The child targets

numbered start through stop of the Target pointed to by parent become the children of this Target

(the one on which this method is called). Its primary use is in multi-processor scheduling or code

generation, in which some construct is assigned to a group of processors. It has a big disadvantage;

the range of child targets must be continuous.

void remChildren();

Remove the \children" list. This does not delete the child targets.

void deleteChildren();

Delete all the \children". This assumes that the child Targets were created with new.

virtual const char* auxStarClass() const;

Auxiliary star class: permits a second type of star in addition to supportedStarClass. The

default implementation returns a null pointer, indicating no auxiliary star class.

Sorry, there is no present way to support yet a third type.

const char* writeDirectoryName(const char* dirName = 0);

This method returns a directory name that is intended for use in writing �les, particularly for

code generation targets. If the directory does not exist, it attempts create it. Returns the fully

expanded pathname (which is saved by the target).

const char* workingDirectory() const;

Return directory name previously set by writeDirectoryName.

char* writeFileName(const char* �leName = 0);

Method to set a �le name for writing. writeFileName prepends dirFullName (which was set

by writeDirectoryName) to �leName with \/" between. Always returns a pointer to a string in

new memory. It is up to the user to delete the memory when no longer needed. If dirFullName or

�leName is NULL then it returns a pointer to a new copy of the string \/dev/null".

Chapter 3: Control of Execution and Error Reporting 38

indicated by type from the child Target numbered sender to the child target numbered receiver.

The default implementation returns 0 regardless of the parameters. No meaning is speci�ed at

this level for the type codes, as di�erent languages have di�erent types; all that is required is that

di�erent types supported by a particular target map into distinct type codes.

Galaxy* galaxy();

Return my galaxy pointer (0 if it has not been set).

3.1.2 Target protected members

virtual void setup();

This is the main initialization function for the target. It is called by the initialize function,

which by default initializes the Target states.

The default implementation does the following. The halt
ag of SimControl is cleared. Each

star is checked to see if its type is supported by the target (because the isA function reports that

it is one of the supported star classes). If a star does not match this condition an error is reported.

If all goes well, then the setup member function of the target's Scheduler object is called.

void setSched(Scheduler* sch);

The target's scheduler is set to sch, which must either point to a scheduler on the heap or be

a null pointer. Any preexisting scheduler is deleted. Also, the scheduler's setTarget member is

called, associating the Target with the Scheduler.

void delSched();

This function deletes the target's scheduler and sets the scheduler pointer to null.

void addChild(Target& child);

Add child as a child target.

void inheritChildren(Target* parent, int start, int stop);

Chapter 3: Control of Execution and Error Reporting 37

virtual void setStopTime(double when);

Set the stopping condition. The default implementation just passes this on to the scheduler.

virtual void resetStopTime(double when);

Reset the stopping condition for the wormhole containing this Target. The default implemen-

tation just passes this on to the scheduler. In addition to the action performed by setStopTime,

this function also does any synchronization required by wormholes.

virtual void setCurrentTime(double now);

Set the current time to now.

virtual int run();

virtual void wrapup();

The following methods are provided for code generation; schedulers may call these. They may

move to class CGTarget in a future Ptolemy release.

virtual void beginIteration(int repetitions, int depth);

Function called to begin an iteration (default version does nothing).

virtual void endIteration(int repetitions, int depth);

Function called to end an iteration (default version does nothing).

virtual void writeFiring(Star& s, int depth);

Function called to generate code for the star, with any modi�cations required by this particular

Target (the default version does nothing).

virtual int commTime(int sender,int receiver,int nUnits, int type);

Return the number of time units required to send nUnits units of data whose type is the code

Chapter 3: Control of Execution and Error Reporting 36

Target* cloneTarget() const;

This simply returns the result of the clone function as a Target. It is used by the KnownTarget

class, for example to create a Target object corresponding to a name speci�ed from a user interface.

virtual StringList displaySchedule();

The default implementation simply passes this call along to the scheduler; derived classes may

modify this.

Target* child(int n);

Return the nth child Target, null if no children or if n exceeds the number of children.

Target* proc(int n);

This is the same as child if there are children. If there are no children, an argument of 0 will

return a pointer to the object on which it is called, otherwise a null pointer is returned.

int nProcs() const;

Return the number of processors (1 if no children, otherwise the number of children).

virtual int hasResourcesFor(Star& s,const char* extra=0);

Determine whether this target has the necessary resources to run the given star. It is virtual in

case later necessary. The default implementation uses \resources" states of the target and the star.

virtual int childHasResources(Star& s,int childNum);

Determine whether a particular child target has resources to run the given star. It is virtual in

case later necessary.

virtual void setGalaxy(Galaxy& g);

Associate a Galaxy with the Target. The default implementation just sets its galaxy pointer

gal to point to g.

Chapter 3: Control of Execution and Error Reporting 35

The SimControl class provides a means to register actions for execution during a simulation, as

well as facilities to cleanly halt execution on an error.

3.1 Class Target

Class Target is derived from class Block (see Section 2.1 [class Block], page 17); at such, it can

have states and a parent (the fact that it can also have portholes is not currently used). A Target

is capable of supervising the execution of only certain types of Stars; the starClass argument in

its constructor speci�es what type. A Universe or InterpUniverse is run by executing its Target.

Targets have Schedulers, which as a rule control order of execution, but it is the Target that is \in

control".

A Target can have children that are other Targets; this is used, for example, to represent multi-

processor systems for which code is being generated (the parent target represents the system as a

whole, and child targets represent each processor).

3.1.1 Target public members

Target(const char* name, const char* starClass,const char* desc = "");

This is the signature of the Target constructor. name speci�es the name of the Target and desc

speci�es its descriptor (these �elds end up �lling in the corresponding NamedObj �elds).

The starClass argument speci�es the class of stars that can be executed by the Target. For

example, specifying DataFlowStar for this argument means that the Target can run any type of

star of this class or a class derived from it. The isA function is used to perform the check.

See the description of auxStarClass below.

const char* starType() const;

Return the supported star class (the starClass argument from the constructor).

Scheduler* scheduler() const;

Return a pointer to my scheduler.

Chapter 3: Control of Execution and Error Reporting 34

Return the name of the current target.

Scheduler* scheduler() const;

Return the scheduler belonging to the current target (0 if none).

Target* myTarget() const;

Return a pointer to the current target.

int run();

Invokes Runnable::run.

void wrapup();

Invokes wrapup on the target.

3 Control of Execution and Error Reporting

The principal classes responsible for control of the execution of the universe are the Target

and the Scheduler. The Target has high-level control over what happens when a user types \run"

from the interface; Targets take on particular importance in code generation domains where they

describe all the features of the target of execution, but they are used to control execution in

simulation domains as well.

Targets use Schedulers to control the order of execution of Blocks under their control. In some

domains, the Scheduler does almost everything; the Target simply starts it up. In others, the

Scheduler determines an execution order and the Target takes care of a many other details, such as

generating code in accordance with the schedule, downloading the code to an imbedded processor,

and executing it.

The Error class provides a means to format error messages and optionally to halt execution. The

interface is always the same, but di�erent user interfaces typically provide di�erent implementations

of the methods of this class.

Chapter 2: Block and related classes 33

Ptolemy applications. For applications that use a user interface to dynamically build universes,

class InterpUniverse is used instead.

In addition to the Runnable and Galaxy functions, it has:

Universe(Target* s,const char* typeDesc);

The constructor speci�es the target and the universe type.

Scheduler* scheduler() const;

Returns the scheduler belonging to the universe's target.

int run();

Return Runnable::Run.

2.8 Class InterpUniverse

Class InterpUniverse is inherited from both InterpGalaxy and Runnable. Ptolemy user interfaces

build and execute InterpUniverses.

In addition to the standard InterpGalaxy functions, it provides:

InterpUniverse (const char* name = "mainGalaxy");

This creates an empty universe with no target and the given name. If no name is speci�ed,

mainGalaxy is the default.

int newTarget(const char* newTargName = 0);

This creates a target of the given name (from the KnownTarget list), deleting any existing

target.

const char* targetName() const;

Chapter 2: Block and related classes 32

Runnable(Target* tar, const char* ty, Galaxy* g);

Runnable(const char* targetname, const char* dom, Galaxy* g);

void initTarget();

This function initializes target and/or generates the schedule.

int run();

This function causes the object to run, until the stopping condition is reached.

virtual void setStopTime(double stamp);

This function sets stop time. The default implementation just calls the identical function in the

target.

StringList displaySchedule();

Display schedule, if appropriate (some types of schedulers will return a string saying that

compile-time scheduling is not performed, e.g. DE and DDF schedulers).

virtual ~Runnable();

The destructor deletes the Target.

A Runnable object has the following protected data members:

const char* type;

Target* target;

Galaxy* galP;

As a rule, when used as one of the baseclasses for multiple inheritance, the galP pointer will

point to the galaxy provided by the other half of the object.

2.7 Class Universe

Class Universe is inherited from both Galaxy and Runnable. It is intended for use in standalone

Chapter 2: Block and related classes 31

wormhole will be created. A wormhole will also be created if innerTarget is speci�ed, or if galaxies

for the domain outerDomain are always wormholes (this is determined by asking the Domain class).

Once addToKnownList is called on an InterpGalaxy object, that object should not be modi�ed

further or deleted. The KnownBlock class (see Section 9.1 [class KnownBlock], page 94) will manage

it from this point on. It will be deleted if a second de�nition with the same name is added to the

known list, or when the program exits.

2.5.4 other InterpGalaxy functions

const char* className() const

Return the current class name (which can be changed). Unlike most other classes, where this

function returns the C++ class name, we consider the class name of galaxies built by InterpGalaxy

to be variable; it is set by addToKnownList and copied from one galaxy to another by the copy

constructor or by cloning.

void initialize();

Overrides Block::initialize(). The main extra work is to do variable-parameter initializa-

tions, such as delays and bus connections for which the delay value or bus width is an expression

with variables.

Block* blockWithDottedName(const char* name);

Returns a pointer to an inner block, at any depth, whose name matches the speci�cation name.

For example, blockWithDottedName("a.b.c") would look �rst for a subgalaxy named "a", then

within that for a subgalaxy named "b", and �nally with that for a subgalaxy named "c", returning

either a pointer to the �nal Block or a null pointer if a match is not found.

2.6 Class Runnable

The Runnable class is a sort of mixin class intended to be used with multiple inheritance to

create runnable universes and wormholes. It is de�ned in the �le Universe.h.

Constructors:

Chapter 2: Block and related classes 30

2.5.2 deleting InterpGalaxy structures

int delStar(const char* starname);

Delete the instance named starname from the current galaxy. Ports of other stars that were

connected to ports of starname will become disconnected. Returns 1 on success, 0 on failure. On

failure an error message of the form

No instance of ``starname'' in ``galaxyname''

will be produced. The name is a misnomer since starclass may name a galaxy or a wormhole.

int disconnect(const char* block, const char* port);

Disconnect the porthole port, in subblock block, from whatever it is connected to. This works

for point-to-point or netlist connections.

int delNode(const char* nodename);

Delete the node nodename.

2.5.3 InterpGalaxy and cloning

Block *makeNew() const;

Block *clone() const;

For InterpGalaxy the above two functions have the same implementation. An identical copy of

the current object is created on the heap.

void addToKnownList(const char* outerDomain,Target* innerTarget = 0);

This function adds the galaxy to the known list, completing the de�nition of a galaxy class.

The \class name" is determined by the name of the InterpGalaxy (as set by Block::setBlock or

in some other way). This class name will be returned by the className function, both for this

InterpGalaxy and for any others produced from it by cloning.

If outerDomain is di�erent from the system's current domain (read from class KnownBlock), a

Chapter 2: Block and related classes 29

Create a new port for the galaxy and make it an alias for the porthole blockport contained in

the subblock block. Note that this is unlike the Galaxy alias method in that this method creates

the galaxy port.

int addNode(const char* nodename);

Create a node for use in netlist-style connections and name it nodename.

int nodeConnect(const char* blockname, const char* portname,

const char* node, const char* delay = 0);

Connect the porthole named portname in the subblock named blockname to the node named

node. Return 1 for success, 0 and an error message for failure.

int addState(const char* statename, const char* stateclass,

const char* statevalue);

Add a new state named statename, of type stateclass, to the galaxy. Its default initial value is

given by statevalue.

int setState(const char* blockname, const char* statename,

const char* statevalue);

Change the initial value of the state named statename that belongs to the subblock blockname

to the string given by statevalue. As a special case, if blockname is the string this, the state

belonging to the galaxy, rather than one belonging to a subblock, is changed.

int setDomain(const char* newDomain);

Change the inner domain of the galaxy to newDomain. This is the technique used to create

wormholes (that are one domain on the outside and a di�erent domain on the inside). It is not

legal to call this function if the galaxy already contains stars.

int numPorts(const char* blockname, const char* portname, int numP);

Here portname names a multiporthole and blockname names the block containing it. numP

portholes are created within the multiporthole; these become ports of the block as a whole. The

names of the portholes are formed by appending #1, #2, etc. to the name of the multiporthole.

Chapter 2: Block and related classes 28

No star/galaxy named 'starclass' in domain 'current-domain'

will be produced. The name is a misnomer since starclass may name a galaxy or a wormhole.

int connect(const char* srcblock, const char* srcport,

const char* dstblock, const char* dstport,

const char* delay = 0);

This method creates a point-to-point connection between the port srcport in the subblock sr-

cblock and the port dstport in the subblock dstblock, with a delay value represented by the ex-

pression delay. If the delay parameter is omitted there is no delay.

The delay expression has the same form as an initial value for an integer state (class IntState),

and is parsed in the same way as an IntState belonging to a subblock of the galaxy would be.

1 is returned for success, 0 for failure. A variety of error messages relating to nonexistent blocks

or ports may be produced.

int busConnect(const char* srcblock, const char* srcport,

const char* dstblock, const char* dstport,

const char* width, const char* delay = 0);

This method creates a point-to-point bus connection between the multiport srcport in the sub-

block srcblock and the multiport dstport in the subblock dstblock, with a width value represented

by the expression width and delay value represented by the expression delay. If the delay parameter

is omitted there is no delay.

A bus connection is a series of parallel connections: each multiport contains width portholes

and all are connected in parallel.

The delay and width expressions have the same form as an initial value for an integer state (class

IntState), and are parsed in the same way as an IntState belonging to a subblock of the galaxy

would be.

1 is returned for success, 0 for failure. A variety of error messages relating to nonexistent blocks

or multiports may be produced.

int alias(const char* galport, const char* block, const char *blockport);

Chapter 2: Block and related classes 27

2.5 Class InterpGalaxy

InterpGalaxy is derived from DynamicGalaxy. It is the key workhorse for interfacing between

user interfaces, such as ptcl or pigi, and the Ptolemy kernel, because it has commands for building

structures given commands speci�ed in the form of text strings. These commands add stars and

galaxies of given types and build connections between them. InterpGalaxy interacts with the

KnownBlock class (see Section 9.1 [class KnownBlock], page 94) to create stars and galaxies, and

the Domain class (see Section 9.3 [class Domain], page 97) to create wormholes.

InterpGalaxy di�ers from other classes derived from Block in that the \class name" (the value

returned by className()) is a variable; the class is used to create many di�erent \derived classes"

corresponding to di�erent topologies.

In order to use InterpGalaxy to make a user-de�ned galaxy type, a series of commands are

executed that add stars, connections, and other features to the galaxy. When a complete galaxy

has been designed, the addToKnownList member function adds the complete object to the known

list, an action that has the e�ect of adding a new \class" to the system.

InterpGalaxy methods that return an int return 1 for success and 0 for failure. On failure, an

appropriate error message is generated by means of the Error class.

2.5.1 building structures with InterpGalaxy

The no-argument constructor creates an empty galaxy. There is a constructor that takes a single

const char * argument specifying the class name (the value to be returned by className(). The

copy constructor creates another InterpGalaxy with the identical internal structure. There is also

an assignment operator that does much the same.

void setDescriptor(const char* dtext)

Set the descriptor. Note that this is public, though the NamedObj function is protected. dtext

must live as long as the InterpGalaxy does.

int addStar(const char* starname, const char* starclass);

Add a new star or galaxy with classname starclass to this InterpGalaxy, naming the new instance

starname. The known block list for the current domain is searched to �nd starclass. Returns 1 on

success, 0 on failure. On failures, an error message of the form

Chapter 2: Block and related classes 26

Support blockWithName message to access internal block list.

void initSubblocks();

void initStateSubblocks();

Former: Initialize subblocks only. Latter: initialize states in subblocks only.

2.3.3 Galaxy iterators

There are three types of iterators associated with a Galaxy: GalTopBlockIter, GalAllBlockIter,

and GalStarIter. The �rst two iterators return pointers to Block; the �nal one returns a pointer to

Star.

As its name suggests, GalTopBlockIter returns only the Blocks on the top level of the galaxy.

GalAllBlockIter returns Blocks at all levels of the hierarchy, in depth-�rst order; if there is a galaxy

inside the galaxy, �rst it is returned, then its contents are returned. Finally, GalStarIter returns

only the atomic blocks in the Galaxy, in depth-�rst order.

There is also a const form of GalTopBlockIter, called CGalTopBlockIter.

Here is a function that prints out the names of all stars at any level of the given galaxy onto a

given stream.

void printNames(Galaxy& g,ostream& stream) {

GalStarIter nextStar(g);

Star* s;

while ((s = nextStar++) != 0)

stream << s->fullName() << "\n";

}

2.4 Class DynamicGalaxy

A DynamicGalaxy is a type of Galaxy for which all blocks, ports, and states are allocated on the

heap. When destroyed, it destroys all of its blocks, ports, and states in a clean manner. There's

not much more to it than that: it provides a destructor, class identi�cation functions isA and

className, and little else.

Chapter 2: Block and related classes 25

Print a description of the galaxy.

int isItAtomic () const;

Returns FALSE (galaxies are not atomic blocks).

Galaxy& asGalaxy();

const Galaxy& asGalaxy() const;

These return myself as a Galaxy, overriding Block::asGalaxy.

const char* domain () const;

Return my domain.

void setDomain(const char* dom);

Set the domain of the galaxy (this may become a protected member in the future).

2.3.2 Galaxy protected members

void addBlock(Block& b)

Add b to my list of blocks.

void connect(GenericPort& source, GenericPort& destination,

int numberDelays = 0)

Connect sub-blocks with a delay (default to zero delay).

void alias(PortHole& galPort, PortHole& blockPort);

void alias(MultiPortHole& galPort, MultiPortHole& blockPort);

Connect a Galaxy PortHole to a PortHole of a sub-block, or same for a MultiPortHole.

Block* blockWithName (const char* name);

Chapter 2: Block and related classes 24

are used in each domain. Accordingly, a Galaxy has a data member containing its associated

domain (which is set to null by the constructor).

PortHoles belonging to a Galaxy are, as a rule, aliased so that they refer to PortHoles of an

interior Block, although this is not a requirement.

2.3.1 Galaxy public members

void initialize();

System initialize method. Derived Galaxies should not rede�ne initialize; they should write a

setup() method to do any class-speci�c startup.

void wrapup();

System wrapup method. Recursively calls wrapup in subsystems

void addBlock(Block& b,const char* bname);

Add block to the galaxy and set its name.

int removeBlock(Block& b);

Remove the block b from the galaxy's list of blocks, if it is in the list. The block is not deleted.

If the block was present, 1 is returned; otherwise 0 is returned.

virtual void initState();

Initialize states.

int numberBlocks() const;

Return the number of blocks in the galaxy.

StringList print(int verbose) const;

Chapter 2: Block and related classes 23

virtual void setTarget(Target* t);

Set the target associated with this star.

void noInternalState();

Declare that this star has no internal state (This function may change to protected in future

Ptolemy releases).

int hasInternalState();

Return TRUE if this star has internal state, false if it doesn't. Useful in parallel scheduling.

2.2.2 Star protected members

virtual void go();

This is a method that is intended to be overriden to provide the principal action of executing

this block. It is protected and is intended to be called from the run() member function. The

separation is so that actions common to a domain can be provided in the run function, leaving the

writer of a functional block to only implement go().

Target* targetPtr;

This is a public data member, set by the setTarget public member function.

2.3 Class Galaxy

A Galaxy is a type of Block (see Section 2.1 [class Block], page 17) that has an internal hierar-

chical structure. In particular, it contains other Blocks (some of which may also be galaxies). It

is possible to access only the top-level blocks or to
atten the hierarchy and step through all the

blocks, by means of the various iterator classes associated with Galaxy.

While we generally de�ne a di�erent derived type of Star for each domain, the same kinds of

Galaxy (and derived classes such as InterpGalaxy | see Section 2.5 [class InterpGalaxy], page 27)

Chapter 2: Block and related classes 22

There are also variant versions with a \C" pre�x (CBlockPortIter, etc) de�ned in the �le

`ConstIters.h' that take a reference to a const Block and return a const pointer.

2.2 Class Star

Class Star represents the basic executable atomic version of Block. It is derived from Block (see

Section 2.1 [class Block], page 17).

Stars have an associated Target (see Section 3.1 [class Target], page 35), an index value, and an

indication of whether or not there is internal state.

The default constructor sets the target pointer to null, sets the internal state
ag to TRUE, and

sets the index value to -1.

2.2.1 Star public members

int run();

Execute the Star. This method also interfaces to the SimControl class to provide for control

over simulations. All derived classes that override this method must invoke Star::run.

StringList print (int verbose = 0) const;

Print out info on the star.

Star& asStar();

const Star& asStar() const;

These simply return a reference to this, overriding Block::asStar.

int index() const;

Return the index value for this star. Index values are a feature that assists with certain sched-

ulers; the idea is to assign a numeric index to each star at any level of a particular Universe or

Galaxy.

Chapter 2: Block and related classes 21

void addState(State& s);

Add the state s to the Block's state list.

virtual void initState();

Initialize the States contained in the Block's state list.

StringList printStates(const char* type,int verbose) const;

Return a printed representation of the states in the Block. This function is used as part of the

Block's print method.

int setState(const char* stateName, const char* expression);

Search for a state in the block named stateName. If not found, return 0. If found, set its initial

value to expression and return 1.

2.1.4 Block protected members

virtual void setup();

User-speci�ed additional initialization. By default, it does nothing. It is called by Block::initialize

(and should also be called if initialize is rede�ned).

Block* copyStates(const Block& src);

method for copying states during cloning. It is designed for use by clone methods, and it assumes

that the src argument has the same state list as the this object.

2.1.5 Block iterator classes

There are three types of iterators that may be used on Blocks: BlockPortIter, BlockStateIter,

and BlockMPHIter. Each takes one argument for its constructor, a reference to Block. They step

through the portholes, states, or multiportholes, of the Block, respectively, using the standard

iterator interface.

Chapter 2: Block and related classes 20

virtual int run();

This function is intended to \run" the block. The default implementation does nothing.

virtual void wrapup();

This function is intended to be run after the completion of execution of a universe, and provides

a place for wrapup code. The default does nothing.

virtual Block& setBlock(const char* name,Block* parent=0);

Set the name and parent of a block.

virtual Block* makeNew() const

This is a very important function. It is intended to be overloaded in such a way that calling

it produces a newly constructed object of the same type. The default implementation causes an

error. Every derived type should rede�ne this function. Here is an example implementation of an

override for this function:

Block* MyClass::makeNew() const { return new MyClass;}

virtual Block* clone() const

The distinction between clone and makeNew is that the former does some extra copying. The

default implementation calls makeNew and then copyStates; it may be overridden to copy more

information. The intent is that clone should produce an identical object.

void addPort(PortHole& port)

void addPort(MultiPortHole& port)

Add a porthole, or a multiporthole, to the block's list of known ports or multiports.

int removePort(PortHole& port)

Remove port from the Block's port list, if it is present. 1 is returned if port was present and 0

is returned if it was not. Note that port is not deleted. The destructor for class PortHole calls this

function on its parent block.

Chapter 2: Block and related classes 19

Get a list of multiport names.

StringList printPorts(const char* type, int verbose) const;

Print portholes as part of the info-printing method.

virtual Scheduler* scheduler() const;

Return the controlling scheduler (see Section 3.2 [class Scheduler], page 40) for this block. The

default implementation simply recursively calls the scheduler() function on the parent, or returns

0 if there is no parent. The intent is that eventually a block with a scheduler will be reached (the

top-level universe has a scheduler, and so do wormholes).

virtual Star& asStar();

virtual const Star& asStar() const;

Return reference to me as a Star, if I am one. Warning: it is a fatal error (the entire program

will halt with an error message) if this method is invoked on a Galaxy! Check with isItAtomic

before calling it.

virtual Galaxy& asGalaxy();

virtual const Galaxy& asGalaxy() const;

Return reference to me as a Galaxy, if I am one. Warning: it is a fatal error (the entire program

will halt) if this method is invoked on a Star! Check with isItAtomic before calling it.

virtual const char* domain() const;

Return my domain (e.g. SDF, DE, etc.)

2.1.3 other Block public members

virtual void initialize();

overrides NamedObj::initialize. Block::initialize initializes the portholes and states belonging to

the block, and calls setup(), which is intended to be the \user-supplied" initialization function.

Chapter 2: Block and related classes 18

Block's destructor is virtual and does nothing, except for the standard action of destroying the

Block's data members.

In addition, Block possesses two types of \virtual constructors", the public member functions

makeNew and clone.

2.1.2 Block public \information"members

int numberPorts() const;

int numberMPHs() const;

int numberStates() const;

The above functions return the number of ports, the number of multiports, or the number of

states in the Block.

virtual int isItAtomic() const;

virtual int isItWormhole() const;

These functions return TRUE or FALSE, based on whether the Block is atomic or not, or a

wormhole or not. The base implementations return TRUE for isItAtomic, FALSE for isItWormhole.

virtual StringList print(int verbose) const;

Overrides NamedObj::print. This function gives a basic printout of the information in the

block.

GenericPort* genPortWithName(const char* name);

PortHole* portWithName(const char* name);

MultiPortHole* multiPortWithName(const char* name);

virtual State *stateWithName(const char* name);

These functions search the appropriate list and return a pointer to the contained object with

the matching name. genPortWithName searches both the multiport and the regular port lists

(multiports �rst). If a match is found, it returns a pointer to the matching object as a GenericPort

pointer.

int multiPortNames (const char** names, const char** types,

int* io, int nMax) const;

Chapter 2: Block and related classes 17

Although the Target class is derived from class Block, it is documented elsewhere, as it falls

under control of execution (see Section 3.1 [class Target], page 35).

2.1 Class Block

Block is the basic object for representing an actor in Ptolemy. It is derived from NamedObj

(see Section 1.8 [class NamedObj], page 11).

Important derived types of Block are Star (see Section 2.2 [class Star], page 22), representing an

atomic actor; Galaxy (see Section 2.3 [class Galaxy], page 23), representing a collection of actors

that can be thought of as one actor, and Universe (see Section 2.7 [class Universe], page 32),

representing an entire runnable system.

A Block has portholes (connections to other blocks | see Section 5.2 [class PortHole], page 57),

states (parameters and internal states | see Section 8.1 [class State], page 86), and multiportholes

(organized collections of portholes | see Section 5.3 [class MultiPortHole], page 63).

While the exact data structure used to represent each is a secret of class Block, it is visible

that there is an order to each list, in that iterators return the contained states, portholes, and

multiportholes in this order. Iterators (see Section 1.2 [Iterators], page 1) are a set of helper classes

that step through the states, portholes, or multiportholes that belong to the Block, see the menu

entry.

Furthermore, Blocks can be cloned, an operation that produces a duplicate block. There are

two cloning functions: makeNew, which resembles making a new block of the same class, and clone,

which makes a more exact duplicate (with the same values for states, for example). This feature

is used by the KnownBlock class (see Section 9.1 [class KnownBlock], page 94) to create blocks on

demand.

2.1.1 Block constructors and destructors

Block has a default constructor, which sets the name and descriptor to empty strings and the

parent pointer to null, and a three-argument constructor:

Block(const char* name,Block* parent,const char* descriptor);

Chapter 2: Block and related classes 16

The �rst word speci�ed is the bitsOn �eld, and the second word speci�ed is the bitsOff �eld.

Other than to initialize objects, we pretend that these data members are private.

1.10.1 Attribute member functions

Attribute& operator |= (const Attribute& arg);

Attribute& operator &= (const Attribute& arg);

These operations combine attributes, by applying the |= and &= operators to the bitsOn and

bitsO� �elds. The �rst operation, as attributes are commonly used, represents a requirement that

two sets of attributes be met, so it has been argued that it really should be the \and" operation.

However, the current scheme has the virtue of consistency.

bitWord eval(bitWord defaultVal) const;

Evaluate an attribute given a default value. Essentially, bits corresponding to bitsOn are turned

on, and then bits corresponding to bitsO� are turned o�.

bitWord clearAttribs(bitWord defaultVal) const;

This method essentially applies the attribute backwards, reversing the roles of bitsOn and bitsO�

in eval.

bitWord on() const;

bitWord off() const;

Retrieve the bitsOn and bitsO� values, respectively.

Inline de�nitions of operators & and | are also de�ned to implement nondestructive forms of the

&= and |= operations.

2 Block and related classes

This section describes Block, the basic functional block class, and those objects derived from it.

It is Blocks more than anything else that a user of Ptolemy deals with. Actors as well as collections

of actors are Blocks.

Chapter 1: Basic concepts, classes, and facilities 15

the members of the list are on the heap (allocated by new, so that deleting them is valid)!

1.9.3 NamedObjList iterators

There are two di�erent iterators associated with NamedObjList; class NamedObjListIter and

class CNamedObjListIter. The latter may be applied to const NamedObjList objects and returns

const NamedObj pointers; the former requires non-const NamedObjList objects and returns non-

const NamedObj pointers. They obey the standard iterator interface and are privately derived

from class ListIter.

1.10 Attributes

Attributes represent logical properties that an object may or may not have. A parameter may

or may not be settable by the user; an assembly-language bu�er may be allocated in ROM or RAM,

fast memory or slow memory, etc.

The set of attributes of an object is stored in an entity called a bitWord. At present, a bitWord

is represented as an unsigned long, which restricts the number of distinct attributes to 32; this may

be changed in future releases.

An Attribute object represents a request to turn certain attributes of an object o�, and to turn

other attributes on. As a rule, constants of class Attribute are used to represent attributes, and

users have no need to know whether a given property is represented by a true or false bit in the

bitWord.

Although we would prefer to have a constructor for Attribute objects of the form

Attribute(bitWord bitsOn, bitWord bitsO�);

it has turned out that doing so presents severe problems with order of construction, since a

number of global Attribute objects are used and there is no simple, portable way of guaranteeing

that these objects are constructed before any use. As a result, the bitsOn and bitsOff members

are public, but we forbid use of that fact except in one place: constant Attribute objects can be

initialized by the C \aggregate form", as in the following example:

extern const Attribute P_HIDDEN = {PB_HIDDEN, 0};

Chapter 1: Basic concepts, classes, and facilities 14

1.9.1 NamedObjList information functions

The size and initialize functions of SequentialList are re-exported. Note that initialize

removes only the links to the objects and does not delete the objects.

Here's what's new:

const NamedObj* objWithName(const char* name) const;

NamedObj* objWithName(const char* name);

Find the �rst NamedObj on the list whose name is equal to name, and return a pointer to it.

Return 0 if it is not found.

NamedObj* head();

const NamedObj* head() const;

Return a pointer to the �rst object on the list (0 if none). There are two forms, one of which

can be applied to const NamedObjList objects.

1.9.2 other NamedObjList functions

void put(NamedObj& obj)

Add a pointer to obj to the list, at the end.

void initElements();

Apply the initialize method to each NamedObj on the list.

int remove(NamedObj* obj);

Remove obj from the list, if present (this does not delete obj). Return 1 if it was present, 0 if

not.

void deleteAll();

Delete all elements from the list, and reset it to be an empty list. WARNING: this assumes that

Chapter 1: Basic concepts, classes, and facilities 13

virtual int isA(const char* cname) const;

The isA method should be rede�ned for all classed derived from NamedObj. Its function is to

return TRUE if the argument is the name either of the class or of one of the baseclasses. To make

this easy to implement, a macro ISA_FUNC is provided; for example, in the �le Block.cc we see the

line

ISA_FUNC(Block,NamedObj);

since NamedObj is the base class from which Block is derived. This macro creates the function

de�nition

int Block::isA(const char* cname) const {

if (strcmp(cname,"Block") == 0) return TRUE;

else return NamedObj::isA(cname);

}

Methods isA and className are overriden in derived classes; the rede�nitions will not be

described for each individual class.

1.8.3 NamedObj protected members

void setDescriptor(const char* desc);

The descriptor is set to desc. The string pointed to by desc must live as long as the NamedObj

does.

1.9 Class NamedObjList

Class NamedObjList is simply a list of objects of class NamedObj. It is privately inherited from

class SequentialList (see Section 1.5 [class SequentialList], page 4), and, as a rule, other classes

privately inherit from it. It supports only a subset of the operations provided by SequentialList; in

particular, objects are added only to the end of the list. It provides extra operations, like searching

for an object by name and deleting objects.

This object enforces the rule that only const pointers to members can be obtained if the list is

itself const; hence, two versions of some functions are provided.

Chapter 1: Basic concepts, classes, and facilities 12

const char* name() const;

name returns the local portion of the name of the class.

const char* descriptor() const;

descriptor returns the descriptor.

Block* parent() const;

parent returns a pointer to the parent block.

virtual StringList fullName() const;

fullName returns the full name of the object. This has no relation to the class name; it speci�es

the speci�c instance's place in the universe-galaxy-star hierarchy. The default implementation

returns names that might look like

universe.galaxy.star.port

for a porthole; the output is the fullName of the parent, plus a period, plus the fullName of the

NamedObj it is called on.

void setNameParent (const char* my name,Block* my parent)

This method changes the name and parent pointer of the object.

virtual void initialize() = 0;

initialize is a pure virtual method. Its function is to initialize the object to prepare for system

execution.

virtual StringList print (int verbose) const;

print returns a verbose description of the object. If verbose is 0, a somewhat more compact

form is printed than if verbose is 1.

Chapter 1: Basic concepts, classes, and facilities 11

It accesses but does not remove the element from the top of the stack.

All these functions are implemented on top of the (hidden) SequentialList functions. The Se-

quentialList functions size and initialize are re-exported.

1.8 Class NamedObj

NamedObj is the baseclass for most of the common Ptolemy objects. A NamedObj is, simply

put, a named object; in addition to a name, a NamedObj has a pointer to a parent object, which is

always a Block (a type of NamedObj). This pointer can be null. A NamedObj also has a descriptor.

Warning! NamedObj assumes that the name and descriptor \live" as long as the NamedObj

does. They are not deleted by the destructor, so that they can be compile-time strings.

Important derived types of NamedObj include Block (see Section 2.1 [class Block], page 17),

GenericPort (see Section 5.1 [class GenericPort], page 54), State (see Section 8.1 [class State],

page 86), and Geodesic (see Section 5.6 [class Geodesic], page 68).

1.8.1 NamedObj constructors and destructors

All constructors and destructors are public.

NamedObj has a default constructor, which sets the name and descriptor to empty strings and

the parent pointer to null, and a three-argument constructor:

NamedObj(const char* name,Block* parent,const char* descriptor)

NamedObj's destructor is virtual and does nothing.

1.8.2 NamedObj public members

virtual const char* className() const;

className returns the name of the class. It should have a new implementation supplied for

every derived class (except for abstract classes, where this is not necessary).

Chapter 1: Basic concepts, classes, and facilities 10

1.7 Other generic container classes

The �le DataStruct.h de�nes two other generic container classes that are privately derived

from SequentialList: Queue and Stack.

Class Queue may be used to implement a FIFO or a LIFO queue, or a mixture.

Class Stack implements a stack.

1.7.1 Class Queue

The constructor for class Queue builds an empty queue. The following four functions move

pointers into or out of the queue:

void putTail(Pointer p);

void putHead(Pointer p);

Pointer getHead();

Pointer getTail();

put is a synonym for putTail, and get is a synonym for getHead. All these functions are

implemented on top of the (hidden) SequentialList functions. The SequentialList functions size

and initialize are re-exported (that is, are accessible as public member functions of class Stack).

1.7.2 Class Stack

The constructor for class Stack builds an empty stack. The following functions move pointers

onto or o� of the stack:

void pushTop(Pointer p);

Pointer popTop();

pushBottom(Pointer p);

pushTop and popTop are the functions traditionally associated with a stack; pushBottom adds

an item at the bottom, which is non-traditional. The following non-destructive function also exists:

Pointer accessTop() const;

Chapter 1: Basic concepts, classes, and facilities 9

(why is this here?).

int size();

Return the number of elements in the list. Should be const.

DoubleLink *head();

DoubleLink *tail();

Return a pointer to the head, or to the tail, of the list. If the list is empty both will return a

null pointer.

DoubleLink *getHeadLink();

Pointer takeFromFront();

The former function gets and removes the head link from the list, returning a pointer to it. The

second function calls the �rst to obtain the head node; it gets the node, saves the contents, deletes

the node, and returns the contents. If the list is empty, both functions return a null pointer.

DoubleLink *getTailLink();

Pointer takeFromBack();

These functions are identical to the previous pair except that they remove the last node rather

than the �rst.

The following two data members are protected:

DoubleLink *myHead;

DoubleLink *myTail;

1.6.3 Class DoubleLinkIter

DoubleLinkIter is an iterator for DoubleLinkList. It is only capable of moving \forward" through

the list (following the \next" links, not the \prev" links).

Its next operator returns the Pointer values contained within the nodes; it is also possible to

use the non-standard nextLink function to return successive DoubleLink pointers.

Chapter 1: Basic concepts, classes, and facilities 8

void appendLink(DoubleLink *x);

void append(Pointer e);

These functions append at the end of the list. The �rst appends a DoubleLink; the second

creates a DoubleLink with createLink and appends that.

void insertAhead(DoubleLink *y, DoubleLink *x);

void insertBehind(DoubleLink *y, DoubleLink *x);

The �rst one inserts y immediately ahead of x; the second inserts y immediately after x. Both

these functions assume that x is in the list; disaster may result otherwise.

DoubleLink* unlink(DoubleLink *x);

Unlink the link x from the list and return a pointer to it. Make sure that x is in the list before

calling this method, or disaster may result.

void removeLink(DoubleLink *x);

This is the same as unlink, except that x is deleted as well. The same cautions apply.

void remove(Pointer e);

The list is searched for a DoubleLink whose contents match e. If a match is found, the node is

deleted. The search is made in the \forward" direction.

int find(Pointer e);

The list is searched for a DoubleLink whose contents match e. If a match is found, 1 (true) is

returned; otherwise 0 (false) is returned.

virtual void initialize();

This function deletes all links of the list and makes the list empty.

void reset();

This function resets the �elds of the DoubleLinkList object without doing anything to the nodes

Chapter 1: Basic concepts, classes, and facilities 7

This is a do-nothing destructor, but making it virtual makes the right thing happen for derived

classes.

void unlinkMe();

This method deletes the node from the list it is contained in, by connecting together the elements

pointed to by the prev and next pointers.

The following data members are protected:

DoubleLink *next; // next node in the list

DoubleLink *prev; // previous node in the list

Pointer e; // contents of this node

1.6.2 Class DoubleLinkList

DoubleLinkList();

DoubleLinkList(Pointer* e);

The �rst form creates an empty list. The second creates a one node list containing e; the node

is on the heap.

virtual ~DoubleLinkList();

The destructor FIXME.

DoubleLink* createLink(Pointer p);

Create a new DoubleLink containing p on the heap. This is a design error: it has nothing to do

with DoubleLinkList and should not be a member of this class.

void insertLink(DoubleLink *x);

void insert(Pointer e);

These functions insert at the beginning of the list. The �rst inserts a DoubleLink; the second

creates a DoubleLink with createLink and inserts that.

Chapter 1: Basic concepts, classes, and facilities 6

const SequentialList

and the ++ operator (or next function) returns a Pointer. Class ListIter is a friend of class

SequentialList. In addition to the standard iterator functions next and reset, this class also

provides a function

void reconnect(const SequentialList& newList);

that attaches the ListIter to a di�erent SequentialList.

1.6 Doubly linked lists

Support for doubly linked lists is found in `DoubleLink.h'. The class DoubleLink implements

a baseclass for nodes in the list, class DoubleLinkList implements the list itself, and class Dou-

bleLinkIter forms an iterator.

We consider this class to have serious design
aws, so it may be reworked quite a bit in subsequent

Ptolemy releases.

1.6.1 Class DoubleLink

Class DoubleLink is the base type for links in DoubleLinkList objects. There are two construc-

tors:

DoubleLink(Pointer p, DoubleLink* next, DoubleLink* prev):

DoubleLink(Pointer p);

The �rst form initializes the next and prev pointers of the node as well as the contents. The

second form sets these pointers to null.

Pointer content();

Returns the content pointer of the node.

virtual ~DoubleLink();

Chapter 1: Basic concepts, classes, and facilities 5

Return 1 if the list has a Pointer that is equal to arg, 0 if not.

1.5.2 other SequentialList functions

These functions modify the list they are applied to.

void prepend(Pointer p);

Add an item at the beginning of the list.

void append(Pointer p);

Add an item at the end of the list.

int remove(Pointer p);

Remove the pointer p from the list if it is present (the test is pointer equality). Return 1 if

present, 0 if not.

Pointer getAndRemove();

Return and remove the head of the list. If the list is empty, return a null pointer (0).

Pointer getTailAndRemove();

Return and remove the last item on the list.

void initialize();

Remove all links from the list. This does not delete the items pointed to by the pointers that

were on the list.

1.5.3 Class ListIter

ListIter is a standard iterator class for use with objects of class SequentialList. The constructor

takes an argument of type

Chapter 1: Basic concepts, classes, and facilities 4

1.5 Class SequentialList

This class implements a single linked list with a count of the number of elements. The constructor

produces a properly initialized empty list, and the destructor deletes the links. However, the

destructor does not delete the items that have been added to the list; this is not possible because

it has only void * pointers and would not know how to delete the items.

There is an associated iterator class for SequentialList called ListIter.

1.5.1 SequentialList information functions

These functions return information about the SequentialList but do not modify it.

int size() const;

Return the size of the list.

Pointer head() const;

Return the �rst item from the list (0 if the list is empty). The list is not changed.

Pointer tail() const;

Return the last item from the list (0 if the list is empty). The list is not changed.

Pointer elem(int n) const;

Return the nth item on the list (0 if there are fewer than n items). Note that the time required

is proportional to n.

int empty() const;

Return 1 if the list is empty, 0 if it is not.

int member(Pointer arg) const;

Chapter 1: Basic concepts, classes, and facilities 3

This function accepts a string and interprets it as a Unix pathname. If the string does not begin

with a ~ or $ character, the string itself is returned. A leading \~/" is replaced by the user's home

directory; a leading \~user/" is replaced by the home directory for user, unless there is no such

user, in which case the original string is returned. Finally, a leading \$env" is replaced by the

value of the environment variable env ; if there is no such environment variable, the original string

is returned.

If any substitutions are made, the return value is actually a pointer into a static bu�er. This

means that a second call to this function may write on top of a value returned by a previous call.

const char* pathSearch(const char* �le,const char* path=0);

For this function, path is a series of Unix-style directory names, separated by colons. If no

second argument is supplied or if the value is null, the value of the PATH environment variable is

used instead. For each of the colon-separated directory strings, the function checks to see whether

dir/�le exists. If it �nds a match, it returns a pointer to an internal bu�er containing the full path

of the match. If it does not �nd a match, it returns a null pointer.

int progNotFound(const char* program,const char* extra=0);

This function searches for program in the user's PATH using the pathSearch function. If a

match is found, the function returns false (0). Otherwise it returns true (1) and also generates an

error message with the Error::abortRun function. If the extra argument is given, it forms the

second line of the error message.

1.4 Generic Data Structures

As Ptolemy does not use templates, our generic lists use the generic pointer technique, with

typedef void * Pointer;

The most commonly used generic data structure in Ptolemy is SequentialList. Other lists

are, as a rule, privately inherited from this class, so that type safety can be preserved. It is possible

to insert and retrieve items at either the head or the tail of the list.

Chapter 1: Basic concepts, classes, and facilities 2

InnerObject* next();

// operator form: a synonym for next

InnerObject* operator++() { return next(); }

// reset the iterator to point to the first object

void reset();

}

A typical programming application for iterators might be something like

// print the names of all objects in the container

ListIter nextItem(myList);

Item *itemP;

while ((itemP = nextItem++) != 0)

cout << itemP->name() << "\n";

It is, as a rule, not safe to modify most container classes in parallel with the use of an iterator,

as the iterator may attempt to access an object that does not exist any more. However, the

reset member function will always make the iterator safe to use even if the list has been modi�ed

(user-written iterators should preserve this property).

1.3 Non-class utility functions

The kernel provides several useful ordinary (non-class) functions, primarily for manipulating

strings and pathnames. Some are de�ned in `miscFuncs.h', others in `paths.h'.

char* savestring(const char* text);

The savestring function creates a copy of the text argument with new and returns a pointer

to it. It is the caller's responsibility to assure that the string is eventually deleted. The argument

must not be a null pointer.

const char* hashstring(const char* text);

This function enters a copy of text into a hash table and returns a pointer to the entry. If two

strings compare equal when passed to strcmp, then if both are passed to hashstring, the return

values will be the same pointer.

const char* expandPathName(const char* �leName);

Chapter 1: Basic concepts, classes, and facilities 1

1 Basic concepts, classes, and facilities

This section describes some basic classes and low-level concepts that are used throughout

Ptolemy. There are a number of iterator classes, all with the same interface. Several important

non-class library functions are provided. A basic linked list class called SequentialList is heavily

used. States (see Section 8.1 [class State], page 86) and Portholes (see Section 5.2 [class PortHole],

page 57) can have attributes; these are particularly important in code generation. Finally, many of

the signi�cant classes in Ptolemy { functional blocks, portholes to implement connections, param-

eters { are derived from NamedObj, the basic object for implementing a named object that lives

in a hierarchy.

1.1 The C++ Subset Used In Ptolemy

The Ptolemy system has grown up with the C++ language, so it does not use all the latest features

in the newest compilers or every nook and cranny of Ellis and Stroustrup's Annotated Reference

Manual, because of unimplemented features or lack of stability of implementation. Instead, we

focused on stability. Accordingly, Ptolemy builds under the Gnu C++ compiler, version 2.2.2, with

version 2.2 of the library libg++; it also build under Sun C++ 2.1, a port of the AT&T `cfront'

compiler to the Sun.

This means, for one thing, that templates are not used. In addition, some features that do

not work that well yet under g++, such as nested classes, are also avoided. Nested enumerations,

however, are used in several places.

1.2 Iterators

Iterators are a very basic and widely used concept in Ptolemy, and are used repeatedly in

Ptolemy programming in almost any situation where a composite object contains other objects.

We have chosen to use a consistent interface for all iterator objects. The typical iterator class has

the following basic interface (some iterators provide additional functions as well):

class MyIterator {

public:

// constructor: argument is associated outer object

MyIterator(OuterObject&);

// next: return a pointer to the next object,

// or a null pointer if no more

The Ptolemy Kernel

A programmer's companion for Ptolemy 0.4

December 8, 1992

by Joseph T. Buck

This document describes the Ptolemy kernel. The principal audience for this document is pro-

grammers who seek to extend Ptolemy in major ways (e.g. write a new domain or a new parallel

scheduler), or who seek a deeper understanding of how the kernel works. A detailed knowledge of

C++ is assumed.

Copyright
c

 1990, 1991, 1992 The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use,

copy, modify, and distribute this software and its documentation for any purpose, provided that

the above copyright notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY

FORDIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGESARIS-

ING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE

UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, IN-

CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-

UNDER IS ON AN \AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO

OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

